An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is base...An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.展开更多
The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deterior...The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.展开更多
This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-p...This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.展开更多
基金the National Natural Science Foundation of China (60496313)
文摘An adaptive modulation (AM) algorithm is proposed and the application of the adapting algorithm together with low-density parity-check (LDPC) codes in multicarrier systems is investigated. The AM algorithm is based on minimizing the average bit error rate (BER) of systems, the combination of AM algorithm and LDPC codes with different code rates (half and three-fourths) are studied. The proposed AM algorithm with that of Fischer et al is compared. Simulation results show that the performance of the proposed AM algorithm is better than that of the Fischer's algorithm. The results also show that application of the proposed AM algorithm together with LDPC codes can greatly improve the performance of multicarrier systems. Results also show that the performance of the proposed algorithm is degraded with an increase in code rate when code length is the same.
基金Supported by National Natural Science Foundation of China 60404022, 60704009), National Outstanding Youth Foundation 60525303), and Natural Science Foundation of Hebei Province F2005000390, F2006000270)
文摘The influence of frequency modulation (FM) interfer- ence on correlation detection performance of the pseudo random code continuous wave (PRC-CW) radar is analyzed. It is found that the correlation output deteriorates greatly when the FM inter- ference power exceeds the anti-jamming limit of the radar. Accord- ing to the fact that the PRC-CW radar echo is a wideband pseudo random signal occupying the whole TF plane, while the FM in- terference only concentrates in a small portion, a new method is proposed based on adaptive short-time Fourier transform (STFT) and time-varying filtering for FM interference suppression. This method filters the received signal by using a binary mask to excise only the portion of the TF plane corrupted by the interference. Two types of interference, linear FM (LFM) and sinusoidal FM (SFM), under different signal-to-jamming ratio (S JR) are studied. It is shown that the proposed method can effectively suppress the FM interference and improve the performance of target detection.
基金This project was supported by the National High Technology Research and Development Program of China (2001AA121031) the National Natural Science Foundation of China (60072028).
文摘This paper presents a pragmatic adaptive scheme for TuCM over slowly fading channels. The adaptive scheme employs a single turbo coded modulator composed of a variable-rate turbo encoder and a variable-rate variable-power MQAM for all fading regions, so it has an acceptable complexity to implement. The optimal adaptive TuCM scheme is determined subject to various system constraints. Simulations have been performed to measure the performance of the scheme for different parameters. It is shown that adopting both the turbo coded modulator and the transmit power achieves a performance within 2.5 dB of the fading channel capacity.