期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
融合异常检测与区域分割的高效K-means聚类算法 被引量:2
1
作者 尹宏伟 杭雨晴 胡文军 《郑州大学学报(工学版)》 CAS 北大核心 2024年第3期80-88,共9页
传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,... 传统K-means及其众多改进算法缺乏显式处理异常样本的能力,导致其聚类性能容易受到异常样本的影响。针对此问题,提出一种融合异常检测与区域分割的高效K-means聚类算法。首先,通过构建统一聚类模型,形成异常检测与聚类之间的交互协同,以提高聚类性能。其次,利用近邻簇搜索技术对各类簇进行自适应的区域分割,以减少冗余计算,提高算法执行效率。最后,为验证所提方法的有效性,在多个合成数据集和真实数据集上分别进行测试。实验结果表明:所提算法聚类性能和执行效率优于其他算法;在添加10%异常样本的Wine数据集上准确度可达0.911。 展开更多
关键词 聚类 K-MEANS 异常检测 区域分割 近邻簇搜索 自适应
在线阅读 下载PDF
基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法 被引量:3
2
作者 史子轶 夏向阳 +3 位作者 刘佳斌 谷阳洋 王玉龙 洪佳瑶 《中国电力》 CSCD 北大核心 2024年第5期168-177,共10页
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density pea... 低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。 展开更多
关键词 低压台区 户变关系 相位识别 自适应k近邻 自适应密度峰值
在线阅读 下载PDF
基于邻域互信息与K-means特征聚类的特征选择 被引量:3
3
作者 孙林 梁娜 徐久成 《智能系统学报》 CSCD 北大核心 2024年第4期983-996,共14页
针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为... 针对多数邻域系统通过人工调试很难搜索到最佳邻域半径,以及传统的K-means聚类需要随机选取簇中心和指定簇的数目等问题,提出了一种基于邻域互信息与K-means特征聚类的特征选择方法。首先,将样本在各特征下与其他样本距离的平均值作为自适应邻域半径,确定样本的邻域集,并由此构建自适应邻域熵、邻域互信息、归一化邻域互信息等度量,反映特征之间的相关性;然后,基于归一化邻域互信息构建自适应K近邻集合,利用Pearson相关系数表示特征的权重定义加权K近邻密度,实现自动选取K-means算法的簇中心,进而完成K-means特征聚类;最后,给出加权平均冗余度,选出每个特征簇中加权平均冗余度最大的特征构成最优特征子集。实验结果表明所提算法不仅可以有效提升特征选择的分类结果而且可以获得更好的聚类效果。 展开更多
关键词 特征选择 邻域互信息 K-MEANS 特征聚类 自适应K近邻 特征权重 加权K近邻密度
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
4
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值聚类 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
K近邻的自适应谱聚类快速算法 被引量:4
5
作者 范敏 王芬 +2 位作者 李泽明 李志勇 张晓波 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期147-152,共6页
谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过... 谱聚类算法建立在谱图划分理论基础上,与传统的聚类算法相比,它具有能在任意形状的样本空间上聚类且收敛于全局最优解的优点。然而,谱聚类算法涉及如何选取合适的尺度参数σ构造相似度矩阵的问题。并且,在处理大规模数据集时,聚类的过程需要较大的时间和内存开销。研究从构造相似度矩阵入手,以传统NJW算法为基础,提出一种基于K近邻的自适应谱聚类快速算法FA-SC。该算法能自动确定尺度参数σ;同时,对输入数据集分块处理,并用基于K近邻的稀疏相似度矩阵保存样本信息,减少计算的内存开销,提高了运行速度。通过实验,与传统谱聚类算法比较,FA-SC算法在人工数据集和UCI数据集上能够取得更好的聚类效果。 展开更多
关键词 谱聚类 K近邻 稀疏矩阵 自适应 快速算法
在线阅读 下载PDF
改进的最小生成树自适应分层聚类算法 被引量:7
6
作者 徐晨凯 高茂庭 《计算机工程与应用》 CSCD 2014年第22期149-153,共5页
针对传统最小生成树聚类算法需要事先知道聚类数目和使用静态全局分类依据,导致聚类密度相差较大时,算法有效性下降,计算复杂度大等问题,提出一种改进的最小生成树自适应分层聚类算法,根据最近邻关系,自动为每个聚类簇设定独立的阈值,... 针对传统最小生成树聚类算法需要事先知道聚类数目和使用静态全局分类依据,导致聚类密度相差较大时,算法有效性下降,计算复杂度大等问题,提出一种改进的最小生成树自适应分层聚类算法,根据最近邻关系,自动为每个聚类簇设定独立的阈值,使之适应分布密度相差较大的情况,并能自动确定聚类数目。实验表明,算法具有较好的性能,尤其对数据密度分布不均匀的情况也能得到较好的聚类结果。 展开更多
关键词 最近邻 自适应聚类 最小生成树 聚类分析
在线阅读 下载PDF
SA-BFSN:一种自适应基于密度聚类的算法 被引量:3
7
作者 陈昊 侯慧群 +1 位作者 杨承志 邱磊 《计算机工程与应用》 CSCD 2012年第36期186-189,共4页
针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实... 针对BFSN算法需要人工输入参数r和λ的缺陷,提出了一种自适应确定r和λ的SA-BFSN聚类方法。该方法通过Inverse Gaussian拟合判断r参数,通过分析噪声点数量的分布特征选择合适的λ值。算法测试表明,使用SA-BFSN无需人工输入参数,能够实现聚类过程的全自动化,能够有效处理任意形状、大小和密度的簇。 展开更多
关键词 数据挖掘 密度聚类 基于广度优先搜索邻居的聚类算法(BFSN) 自适应基于广度优先搜索邻居的聚 类算法(SA-BFSN)
在线阅读 下载PDF
一种基于自适应最近邻的聚类融合方法 被引量:2
8
作者 黄少滨 李建 刘刚 《计算机工程与应用》 CSCD 2012年第19期157-162,共6页
聚类融合通过把具有一定差异性的聚类成员进行组合,能够得到比单一算法更为优越的结果,是近年来聚类算法研究领域的热点问题之一。提出了一种基于自适应最近邻的聚类融合算法ANNCE,能够根据数据分布密度的不同,为每一个数据点自动选择... 聚类融合通过把具有一定差异性的聚类成员进行组合,能够得到比单一算法更为优越的结果,是近年来聚类算法研究领域的热点问题之一。提出了一种基于自适应最近邻的聚类融合算法ANNCE,能够根据数据分布密度的不同,为每一个数据点自动选择合适的最近邻选取范围。该算法与已有的基于KNN的算法相比,不仅解决了KNN算法中存在的过多参数需要实验确定的问题,还进一步提高了聚类效果。 展开更多
关键词 聚类融合 自适应最近邻 ANNCE算法
在线阅读 下载PDF
一种改进的自适应K近邻聚类算法 被引量:2
9
作者 黄晓斌 万建伟 张燕 《计算机工程与应用》 CSCD 北大核心 2004年第15期76-78,130,共4页
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为... 为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 展开更多
关键词 非球形分布 模糊C均值聚类算法(FCA) 自适应k近邻聚类算法(AKNNCA)改进自适应k近邻聚类算法(IAKNNCA)
在线阅读 下载PDF
基于共享最近邻的密度自适应邻域谱聚类算法 被引量:8
10
作者 葛君伟 杨广欣 《计算机工程》 CAS CSCD 北大核心 2021年第8期116-123,共8页
在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性。针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN... 在谱聚类算法没有先验信息的情况下,对于具有复杂形状和不同密度变化的数据集很难构建合适的相似图,且基于欧氏距离的高斯核函数的相似性度量忽略了全局一致性。针对该问题,提出一种基于共享最近邻的密度自适应邻域谱聚类算法(SC-DANSN)。通过一种无参数的密度自适应邻域构建方法构建无向图,将共享最近邻作为衡量样本之间的相似性度量进而消除参数对构建相似图的影响,体现全局和局部的一致性。实验结果表明,SC-DANSN算法相比K-means算法和基于K最近邻的谱聚类算法(SC-KNN)具有更高的聚类精度,同时相比SC-KNN算法对参数的选取敏感性更低。 展开更多
关键词 谱聚类 相似性矩阵 密度自适应邻域 共享最近邻 K最近邻
在线阅读 下载PDF
自然邻居密度极值聚类算法 被引量:2
11
作者 张忠林 赵昱 闫光辉 《计算机工程与应用》 CSCD 北大核心 2021年第23期200-210,共11页
针对密度峰值聚类算法存在数据集密度差异较大时,低密度区域聚类中心难以检测和参数敏感的问题,提出了一种新型密度极值算法。引入自然邻居概念寻找数据对象自然近邻,定义椭圆模型计算自然稳定状态下数据局部密度;计算数据对象余弦相似... 针对密度峰值聚类算法存在数据集密度差异较大时,低密度区域聚类中心难以检测和参数敏感的问题,提出了一种新型密度极值算法。引入自然邻居概念寻找数据对象自然近邻,定义椭圆模型计算自然稳定状态下数据局部密度;计算数据对象余弦相似性值,用余弦相似性值来更新数据对象连通值,采用连通值划分高低密度区域和离群点;构造密度极值函数找到高低密度不同区域聚类中心点;将不同区域非聚类中心点归并到离其最近的聚类中心所在簇中。通过在合成数据集和UCI公共数据集实验分析:该算法比其他对比算法在处理密度分布差异较大数据集上取得了更好的结果。 展开更多
关键词 聚类 自然邻居 密度自适应距离 锚点 连通值 密度极值
在线阅读 下载PDF
结合共享近邻和流形距离的自适应谱聚类算法 被引量:1
12
作者 张喜梅 解滨 +2 位作者 米据生 徐童童 张祎玲 《计算机科学》 CSCD 北大核心 2023年第10期59-70,共12页
谱聚类算法是建立在图论的基础上,将聚类问题转化为图的划分问题,能识别任意形状的类簇且易于实现,因此比传统聚类算法具有更强的适应性。然而,该算法中常用的距离度量不能同时考虑全局和局部一致性,且易受到噪声影响;聚类结果依赖由输... 谱聚类算法是建立在图论的基础上,将聚类问题转化为图的划分问题,能识别任意形状的类簇且易于实现,因此比传统聚类算法具有更强的适应性。然而,该算法中常用的距离度量不能同时考虑全局和局部一致性,且易受到噪声影响;聚类结果依赖由输入数据构造的相似度矩阵,且通过特征分解得到松弛划分矩阵和离散化过程的两步独立策略难以得到一个共同最优解。因此,提出一种结合共享近邻和流形距离的自适应谱聚类算法(SNN-MSC),引入一种新的具有指数项和比例因子的流形距离,可以灵活调整同一流形内数据的相似度和不同流形之间数据的相似度之比,并将密度因子纳入流形距离度量中,以消除噪声影响;采用共享近邻重新定义相似度度量,能挖掘数据点之间的空间结构和局部关系;同时,对拉普拉斯矩阵施加秩约束,使相似度矩阵中的连通分量完全等于簇个数,能够在优化求解过程中自适应优化数据相似度矩阵和聚类结构,无须再进行离散化操作。在人工数据集和UCI真实数据集上的对比实验显示,所提算法在多个聚类有效性指标上能体现出更好的性能。 展开更多
关键词 谱聚类 流形距离 共享近邻 秩约束 自适应
在线阅读 下载PDF
基于自适应障碍物识别的汽车主动防撞系统 被引量:7
13
作者 解云 徐彬 《机械设计与制造》 北大核心 2018年第4期165-167,171,共4页
为了保障驾驶安全,设计了基于自适应障碍物识别和目标跟踪的汽车防撞系统。根据激光雷达工作原理,提出了自适应阈值的最近邻聚类算法用于障碍物识别;根据城市交通实际状况,提出了基于当前统计模型的自适应Kalman滤波跟踪方法;为了提高... 为了保障驾驶安全,设计了基于自适应障碍物识别和目标跟踪的汽车防撞系统。根据激光雷达工作原理,提出了自适应阈值的最近邻聚类算法用于障碍物识别;根据城市交通实际状况,提出了基于当前统计模型的自适应Kalman滤波跟踪方法;为了提高驾驶舒适度,提出了融入驾驶员习惯的预瞄安全距离模型;对车体进行改装后实验,结果表明的算法能够快速跟踪移动目标,并且具有很高的跟踪精度;在防碰撞试验中,设计的主动防撞系统能够在安全距离及时制动车辆,说明了防撞系统的安全可靠性。 展开更多
关键词 汽车 主动防撞系统 自适应阈值最近邻聚类算法 当前统计模型 预瞄安全距离模型
在线阅读 下载PDF
通用神经网络非线性系统模型参考自适应控制 被引量:4
14
作者 孙红兵 李生权 《计算机应用研究》 CSCD 北大核心 2009年第11期4169-4171,共3页
针对任意复杂的具有最小相位,滞后环节和非最小相位特性的离散非线性系统,提出一种通用的直接神经网络模型参考自适应控制。采用具有在线学习功能的最近邻聚类算法训练RBF神经网络控制器,同时引入优化策略对聚类半径进行自动调整,并利... 针对任意复杂的具有最小相位,滞后环节和非最小相位特性的离散非线性系统,提出一种通用的直接神经网络模型参考自适应控制。采用具有在线学习功能的最近邻聚类算法训练RBF神经网络控制器,同时引入优化策略对聚类半径进行自动调整,并利用构造伪系统的方法构成一种对非最小相位同样有效的神经网络模型参考自适应控制器。仿真研究证明,该控制策略不仅能使多种非线性对象跟踪多种参考信号,而且抗干扰能力和鲁棒性也很好。 展开更多
关键词 RBF神经网络 非线性非最小相位系统 最近邻聚类算法 伪系统 模型参考自适应控制
在线阅读 下载PDF
融合自动权重学习的深度子空间聚类 被引量:3
15
作者 江雨燕 邵金 李平 《计算机工程》 CAS CSCD 北大核心 2022年第8期77-84,97,共9页
子空间聚类算法是一种面向高维数据的聚类方法,具有独特的数据自表示方式和较高的聚类精度。传统子空间聚类算法聚焦于对输入数据构建最优相似图再进行分割,导致聚类效果高度依赖于相似图学习。自适应近邻聚类(CAN)算法改进了相似图学... 子空间聚类算法是一种面向高维数据的聚类方法,具有独特的数据自表示方式和较高的聚类精度。传统子空间聚类算法聚焦于对输入数据构建最优相似图再进行分割,导致聚类效果高度依赖于相似图学习。自适应近邻聚类(CAN)算法改进了相似图学习过程,根据数据间的距离自适应地分配最优邻居以构建相似图和聚类结构。然而,现有CAN算法在进行高维数据非线性聚类时,难以很好地捕获局部数据结构,从而导致聚类准确性及算法泛化能力有限。提出一种融合自动权重学习与结构化信息的深度子空间聚类算法。通过自编码器将数据映射到非线性潜在空间并降维,自适应地赋予潜在特征不同的权重从而处理噪声特征,最小化自编码器的重构误差以保留数据的局部结构信息。通过CAN方法学习相似图,在潜在表示下迭代地增强各特征间的相关性,从而保留数据的全局结构信息。实验结果表明,在ORL、COIL-20、UMIST数据集上该算法的准确率分别达到0.7801、0.8743、0.7421,聚类性能优于LRR、LRSC、SSC、KSSC等算法。 展开更多
关键词 聚类 自编码器 自适应近邻聚类 结构化信息 特征权重
在线阅读 下载PDF
一类通用神经网络非线性系统模型参考自适应控制(英文)
16
作者 姚荣斌 李生权 李娟 《系统仿真学报》 CAS CSCD 北大核心 2009年第21期6807-6810,共4页
针对任意复杂的具有最小相位,滞后环节和非最小相位特性的离散非线性系统,提出一种通用的直接神经网络模型参考自适应控制。并采用具有在线学习功能的最近邻聚类算法训练RBF神经网络控制器,同时引入优化策略对聚类半径进行自动调整,并... 针对任意复杂的具有最小相位,滞后环节和非最小相位特性的离散非线性系统,提出一种通用的直接神经网络模型参考自适应控制。并采用具有在线学习功能的最近邻聚类算法训练RBF神经网络控制器,同时引入优化策略对聚类半径进行自动调整,并利用构造伪系统的方法构成一种对非最小相位同样有效的神经网络模型参考自适应控制器。仿真研究证明,该控制策略不仅能使多种非线性对象跟踪多种参考信号,而且抗干扰能力和鲁棒性也很好。 展开更多
关键词 非线性非最小相位系统 最近邻聚类算法 伪系统 模型参考自适应控制
在线阅读 下载PDF
基于聚类优选自适应KNN的改进定位算法 被引量:14
17
作者 商磊 关维国 龚瑞雪 《传感器与微系统》 CSCD 北大核心 2023年第3期136-139,共4页
针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优... 针对室内复杂环境下,WiFi定位算法选取固定K近邻(KNN)会导致定位精度变差的问题,提出基于MeanShift聚类选取自适应KNN的混合相似度加权KNN(MWKNN)定位算法,并基于几何位置对自适应KNN进行动态优选。通过MeanShift聚类和几何位置动态优选自适应KNN进行加权KNN(WKNN)算法定位估计,削弱了含有较大误差的近邻点参与定位的影响,显著提高了算法的定位精度。实验结果表明:在3 m网格及3 dBm噪声标准差条件下,改进MWKNN定位算法的均方根误差为0.92 m,平均定位误差小于0.74 m;2 m精度下的概率达到96%。定位精度明显优于传统KNN和WKNN算法,同时提升了定位结果的稳定性。 展开更多
关键词 室内定位 MeanShift聚类 几何位置优选 自适应K近邻 加权K近邻定位
在线阅读 下载PDF
基于变化密度的自适应空间聚类方法研究 被引量:2
18
作者 杨亚军 张坤龙 杨晓科 《计算机工程》 CAS CSCD 2014年第8期58-63,69,共7页
针对DBSCAN算法无法处理变化密度的问题,提出一种基于变化密度的自适应空间聚类方法。采用密度变化率来识别不同密度的簇之间的边界,且运行时自动调整参数的值。将密度定义为一个点到其第k个最近邻居的距离,若一个点的邻居的密度与该点... 针对DBSCAN算法无法处理变化密度的问题,提出一种基于变化密度的自适应空间聚类方法。采用密度变化率来识别不同密度的簇之间的边界,且运行时自动调整参数的值。将密度定义为一个点到其第k个最近邻居的距离,若一个点的邻居的密度与该点密度的变化率小于用户给定阈值,则为相似邻居。定义核点为最邻近邻居中至少有k个是相似邻居的点,在此基础上应用DBSCAN算法进行广度优先搜索,将密度相似并且距离可达的核点及其最邻近邻居标记为同一个簇。在判断相似邻居时,根据已加入的核点的平均密度和密度变化率自动调整参数值。实验结果表明,该方法可以准确地发现任意形状、大小和密度的簇,消除孤立点,且通过自适应机制更容易设置合适参数。 展开更多
关键词 自适应 变化密度 k最近邻 聚类 数据挖掘
在线阅读 下载PDF
融合最近邻矩阵与局部密度的自适应K-means聚类算法 被引量:6
19
作者 艾力米努尔·库尔班 谢娟英 姚若侠 《计算机科学与探索》 CSCD 北大核心 2023年第2期355-366,共12页
针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启... 针对传统K-means聚类算法对初始聚类中心和离群孤立点敏感的缺陷,以及现有引入密度概念优化的K-means算法均需要设置密度参数或阈值的缺点,提出一种融合最近邻矩阵与局部密度的自适应K-means聚类算法。受最邻近吸收原则与密度峰值原则启发,通过引入数据对象间的距离差异值构造邻近矩阵,根据邻近矩阵计算局部密度,不需要任何参数设置,采取最近邻矩阵与局部密度融合策略,自适应确定初始聚类中心数目和位置,同时完成非中心点的初分配。人工数据集和UCI数据集的实验测试,以及与传统K-means算法、基于离群点改进的K-means算法、基于密度改进的K-means算法的实验比较表明,提出的自适应K-means算法对人工数据集的孤立点免疫度较高,对UCI数据集具有更准确的聚类结果。 展开更多
关键词 自适应K-means聚类算法 密度峰值原则 最邻近吸收原则 局部密度
在线阅读 下载PDF
自适应聚类中心策略优化的密度峰值聚类算法 被引量:3
20
作者 徐童童 解滨 +1 位作者 张喜梅 张春昊 《计算机工程与应用》 CSCD 北大核心 2023年第21期91-101,共11页
密度峰值聚类算法(DPC)是一种简单高效的无监督聚类算法,能够快速找到聚类中心完成聚类。该算法通过截断距离定义局部密度未考虑样本点的空间分布特征;通过决策图选择聚类中心点,具有较强人为主观性;在分配样本点时采用单一分配策略,易... 密度峰值聚类算法(DPC)是一种简单高效的无监督聚类算法,能够快速找到聚类中心完成聚类。该算法通过截断距离定义局部密度未考虑样本点的空间分布特征;通过决策图选择聚类中心点,具有较强人为主观性;在分配样本点时采用单一分配策略,易产生连带错误。因此提出一种自适应聚类中心策略优化的密度峰值聚类算法(ADPC),采用共享近邻定义两点之间的相似性度量,重新定义了局部密度,使局部密度反应样本间的空间分布特征;通过相邻点之间斜率差分确定样本密度ρ与相对距离δ的乘积γ值的“拐点”,并对γ进行幂函数变换,以提高潜在聚类中心与非聚类中心的区分度,利用决策函数确定潜在的聚类中心,再通过潜在聚类中心之间距离均值自适应确定真实聚类中心;优化了非聚类中心点的分配策略。通过在UCI以及人工数据集上进行实验,该算法都可以自适应准确选定聚类中心,且在一定程度上提高了聚类性能。 展开更多
关键词 密度峰值聚类 共享近邻 斜率差分 自适应 决策函数
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部