An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are mad...An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.展开更多
对电池特性的深刻认识是电池应用研究的重要基础,而弛豫时间分布(distribution of relaxation times,DRT)法是解析电池阻抗谱(electrochemical impedance spectroscopy,EIS)、提取电极过程动力学信息和电池建模的有效手段。然而,DRT函...对电池特性的深刻认识是电池应用研究的重要基础,而弛豫时间分布(distribution of relaxation times,DRT)法是解析电池阻抗谱(electrochemical impedance spectroscopy,EIS)、提取电极过程动力学信息和电池建模的有效手段。然而,DRT函数的求解是一个典型的不适定问题,经典的数值积分方法无法保证解的存在性或唯一性。首先采用分段线性插值近似连续的DRT函数;再通过正则化方法改善问题的不适定性,将DRT函数的求解归结为严格的凸二次规划(quadratic programming,QP)问题;进而运用有效集法(active set method,ASM)得到DRT函数的最优近似解。基于该方法解析液态金属电池的阻抗谱,并简要分析其内阻特性。研究结果表明:该方法为全局收敛,收敛速度快,计算精度高;得到的DRT函数近似解既精确、稳定,又具有明确的物理意义。在电池机理分析和建模中,该方法具有显著的潜在应用价值。展开更多
基金Project (2002CB312200) supported by the National Key Basic Research and Development Program of China Project(03JJY3109) supported by the Natural Science Foundation of Hunan Province
文摘An active set truncated-Newton algorithm (ASTNA) is proposed to solve the large-scale bound constrained sub-problems. The global convergence of the algorithm is obtained and two groups of numerical experiments are made for the various large-scale problems of varying size. The comparison results between ASTNA and the subspace limited memory quasi-Newton algorithm and between the modified augmented Lagrange multiplier methods combined with ASTNA and the modified barrier function method show the stability and effectiveness of ASTNA for simultaneous optimization of distillation column.
文摘对电池特性的深刻认识是电池应用研究的重要基础,而弛豫时间分布(distribution of relaxation times,DRT)法是解析电池阻抗谱(electrochemical impedance spectroscopy,EIS)、提取电极过程动力学信息和电池建模的有效手段。然而,DRT函数的求解是一个典型的不适定问题,经典的数值积分方法无法保证解的存在性或唯一性。首先采用分段线性插值近似连续的DRT函数;再通过正则化方法改善问题的不适定性,将DRT函数的求解归结为严格的凸二次规划(quadratic programming,QP)问题;进而运用有效集法(active set method,ASM)得到DRT函数的最优近似解。基于该方法解析液态金属电池的阻抗谱,并简要分析其内阻特性。研究结果表明:该方法为全局收敛,收敛速度快,计算精度高;得到的DRT函数近似解既精确、稳定,又具有明确的物理意义。在电池机理分析和建模中,该方法具有显著的潜在应用价值。