针对T型三电平储能变流器在受到扰动时直流母线电压容易波动的问题,提出了一种改进的线性自抗扰控制(linear active disturbance rejection control,LADRC)方法以增强直流母线电压的控制稳定性。该方法对线性扩张状态观测器(linear exte...针对T型三电平储能变流器在受到扰动时直流母线电压容易波动的问题,提出了一种改进的线性自抗扰控制(linear active disturbance rejection control,LADRC)方法以增强直流母线电压的控制稳定性。该方法对线性扩张状态观测器(linear extended state observer,LESO)进行了改进。首先,引入总扰动微分状态变量以提升扰动观测能力。其次,对观测器进行降阶处理,一方面降低观测器设计复杂度,另一方面降低相位滞后,提升扰动估计速度。最后,在总扰动通道上增加一个滞后补偿环节减弱噪声放大影响。通过上述改进实现了对系统总扰动的精确快速估计。基于频域分析,得出改进后的LADRC相比传统LADRC具有更优秀的抗扰性能。多组实验结果均表明,与PI控制和传统LADRC相比,在有功功率突变、无功功率突变以及电网电压跌落情况下,所提控制策略的直流母线电压超调量更小,暂态时间更短,验证了所提方法的有效性,保证了储能变流器的正常平稳运行。展开更多
作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中...作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中提出一种含储能的MEH及其分层协调控制策略。上层控制根据储能系统的荷电状态和配电网运行状态协调控制储能变流器与各并网端口变流器之间的功率分配,使得MEH在平抑新能源波动、配网故障恢复等运行模式下均能够对内部储能系统进行能量管理。下层控制通过将储能变流器有功功率的微分值反馈至储能系统控制环路进行补偿,提高储能变流器输入/输出有功功率响应速度。文中设计了MEH控制系统关键参数,利用MATLAB/Simulink对MEH在配电系统中的应用进行仿真。不同工况下的仿真对比验证了所提分层协调控制策略的有效性,证明该策略能够延长储能系统工作时间,提高储能系统有功功率变化率,减小直流母线的电压波动。展开更多
为解决脉冲负载投切对舰船中压直流(medium voltage direct current,MVDC)电力系统的冲击,引入基于双有源桥(dual active bridge,DAB)变换器的锂电池-超级电容混合储能系统。鉴于传统功率分配策略无法实现对超级电容端电压的主动限制的...为解决脉冲负载投切对舰船中压直流(medium voltage direct current,MVDC)电力系统的冲击,引入基于双有源桥(dual active bridge,DAB)变换器的锂电池-超级电容混合储能系统。鉴于传统功率分配策略无法实现对超级电容端电压的主动限制的缺点,引入混合储能系统功率比的概念,建立锂电池功率传输与超级电容功率传输之间的联系;结合DAB变换器电压变比匹配度,提出一种新型动态补偿功率分配策略;采用直接功率控制在MATLAB/Simulink中进行仿真。结果表明,这种策略能有效平复脉冲负载投切对直流母线的冲击,实现闭环功率分配,对超级电容端电压进行主动限制,从而新型动态补偿功率分配策略的有效性得到验证。展开更多
文摘针对T型三电平储能变流器在受到扰动时直流母线电压容易波动的问题,提出了一种改进的线性自抗扰控制(linear active disturbance rejection control,LADRC)方法以增强直流母线电压的控制稳定性。该方法对线性扩张状态观测器(linear extended state observer,LESO)进行了改进。首先,引入总扰动微分状态变量以提升扰动观测能力。其次,对观测器进行降阶处理,一方面降低观测器设计复杂度,另一方面降低相位滞后,提升扰动估计速度。最后,在总扰动通道上增加一个滞后补偿环节减弱噪声放大影响。通过上述改进实现了对系统总扰动的精确快速估计。基于频域分析,得出改进后的LADRC相比传统LADRC具有更优秀的抗扰性能。多组实验结果均表明,与PI控制和传统LADRC相比,在有功功率突变、无功功率突变以及电网电压跌落情况下,所提控制策略的直流母线电压超调量更小,暂态时间更短,验证了所提方法的有效性,保证了储能变流器的正常平稳运行。
文摘作为一种适应高比例分布式新能源接入的新型配电网架构,蜂巢状有源配电网利用多端口能量枢纽(multi-port energy hub,MEH)可实现多微电网/配网单元间功率的互联互济,如MEH中包含储能设备,可以进一步提升新能源利用率和电网可靠性。文中提出一种含储能的MEH及其分层协调控制策略。上层控制根据储能系统的荷电状态和配电网运行状态协调控制储能变流器与各并网端口变流器之间的功率分配,使得MEH在平抑新能源波动、配网故障恢复等运行模式下均能够对内部储能系统进行能量管理。下层控制通过将储能变流器有功功率的微分值反馈至储能系统控制环路进行补偿,提高储能变流器输入/输出有功功率响应速度。文中设计了MEH控制系统关键参数,利用MATLAB/Simulink对MEH在配电系统中的应用进行仿真。不同工况下的仿真对比验证了所提分层协调控制策略的有效性,证明该策略能够延长储能系统工作时间,提高储能系统有功功率变化率,减小直流母线的电压波动。
文摘为解决脉冲负载投切对舰船中压直流(medium voltage direct current,MVDC)电力系统的冲击,引入基于双有源桥(dual active bridge,DAB)变换器的锂电池-超级电容混合储能系统。鉴于传统功率分配策略无法实现对超级电容端电压的主动限制的缺点,引入混合储能系统功率比的概念,建立锂电池功率传输与超级电容功率传输之间的联系;结合DAB变换器电压变比匹配度,提出一种新型动态补偿功率分配策略;采用直接功率控制在MATLAB/Simulink中进行仿真。结果表明,这种策略能有效平复脉冲负载投切对直流母线的冲击,实现闭环功率分配,对超级电容端电压进行主动限制,从而新型动态补偿功率分配策略的有效性得到验证。