A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept...A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.展开更多
由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,...由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,LADRC)与模型预测控制(model predictive control,MPC)的复合控制策略。在电压外环控制中采用LADRC策略以提高系统快速性与抗扰性,并给电流内环提供更精确的参考电流信号;在电流内环控制中采用电流MPC策略以提高跟踪参考信号的能力与系统的鲁棒性,同时对模型预测的空间电压矢量的分区进行优化,减少控制器计算量,在保证输出电流质量的前提下提高运算速度。最后,基于MATLAB/Simulink仿真实验平台对系统进行建模仿真,结果验证了采用LADRC-MPC控制策略对电网电压暂升/暂降、负载不对称引起的电流畸变与谐波污染等综合电能质量问题,可以起到更好的补偿效果,对电网电压的支撑能力也更强。展开更多
The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance...The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.展开更多
基金Project(61273132)supported by the National Natural Foundation of ChinaProject(20110010010)supported by Higher School Specialized Research Fund for the Doctoral Program,China
文摘A novel control scheme of active disturbance rejection internal model control(ADRIMC) is proposed to improve the anti-interference ability and robustness for the dead-time process. The active anti-interference concept is introduced into the internal model control(IMC) by analyzing the relationship between IMC and disturbance observer control(DOB). Further, a design process of disturbance filter is presented to realize the active anti-interference ability for ADRIMC scheme. The disturbance filter is used to estimate an equivalent disturbance consisting of both external disturbances and internal disturbances caused by model mismatches.Simulation results demonstrate that the proposed method possesses a good disturbance rejection performance, though losing some partial dynamic performance. In other words, the proposed method shows a tradeoff between the dynamic performance and the system robust.
文摘由于统一电能质量调节器(unified power quality conditioner,UPQC)系统结构复杂、控制难度大,单一的控制策略不足以使其应对电网系统中的各种故障情况。因此,文中采用一种线性自抗扰控制(linear active disturbance rejection control,LADRC)与模型预测控制(model predictive control,MPC)的复合控制策略。在电压外环控制中采用LADRC策略以提高系统快速性与抗扰性,并给电流内环提供更精确的参考电流信号;在电流内环控制中采用电流MPC策略以提高跟踪参考信号的能力与系统的鲁棒性,同时对模型预测的空间电压矢量的分区进行优化,减少控制器计算量,在保证输出电流质量的前提下提高运算速度。最后,基于MATLAB/Simulink仿真实验平台对系统进行建模仿真,结果验证了采用LADRC-MPC控制策略对电网电压暂升/暂降、负载不对称引起的电流畸变与谐波污染等综合电能质量问题,可以起到更好的补偿效果,对电网电压的支撑能力也更强。
基金the support provided by King Abdulaziz City for Science and Technology (KACST) through the "KACST Annual Program" at King Fahd University of Petroleum & Minerals (KFUPM) for funding this work through project number AT-32-41
文摘The motivation of this work is to obtain single PI/PID tuning formula for different types of processes with enhanced disturbance rejection performance. The proposed tuning formula consistently gives better performance in comparison to several well-known methods at the same degree of robustness for stable, integrating and unstable processes. For the selection of the closed-loop time constant(τc), a guideline is provided over a broad range of time-delay/time-constant ratios on the basis of the peak of maximum sensitivity(Ms). An analysis has been performed for the uncertainty margin with the different process parameters for the robust controller design. It gives the guideline of the Ms-value settings for the PI controller designs based on the process parameters uncertainty. Furthermore, a relationship has been developed between Ms-value and uncertainty margin with the different process parameters(k, τ and θ). Simulation study has been conducted for the broad class of processes and the controllers are tuned to have the same degree of robustness by measuring the maximum sensitivity, Ms, in order to obtain a reasonable comparison.