多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定...多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定运行带来隐患。针对多逆变器并联系统在PCC存在谐波耦合的问题,提出一种降阶自抗扰控制器(Active disturbance rejection control,ADRC)解耦控制策略,通过等效变换降低观测器所需阶次,消除反馈环节中逆变器电流的耦合分量,实现各逆变器的独立控制,有效地减少逆变器对PCC的谐波电流注入,从而改善电流波形。从环路增益角度分析,所提方法能有效消除耦合电流在控制环路的影响,并通过硬件在环试验验证所提方法能显著减少逆变器输出的高次谐波。展开更多
文摘多逆变器并联系统内各逆变器的电流和电压在公共连接点(Point of common coupling,PCC)存在耦合,谐波和扰动会通过电流采样信号对连接到PCC的逆变器的控制产生影响,引起逆变器输出电流波形畸变,进一步增加PCC点的谐波注入,给系统的稳定运行带来隐患。针对多逆变器并联系统在PCC存在谐波耦合的问题,提出一种降阶自抗扰控制器(Active disturbance rejection control,ADRC)解耦控制策略,通过等效变换降低观测器所需阶次,消除反馈环节中逆变器电流的耦合分量,实现各逆变器的独立控制,有效地减少逆变器对PCC的谐波电流注入,从而改善电流波形。从环路增益角度分析,所提方法能有效消除耦合电流在控制环路的影响,并通过硬件在环试验验证所提方法能显著减少逆变器输出的高次谐波。