为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE...为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。展开更多
文摘为了解决高比例分布式电源(distributed generation,DG)大规模并网后实时量测数目缺失、传统预测辅助状态估计方法(forecasting-aided state estimation,FASE)估计精度有限等问题,提出了基于改进Crossformer伪量测构建的主动配电网FASE方法。首先,基于最大信息系数法(maximal information coefficient,MIC)筛选出高相关性的输入特征,提高预测模型的精度;然后,通过全变差正则化技术(total variation regularized,TV)优化鲁棒主成分分析法(robust principal component analysis,RPCA),构建TRPCA层,并将其嵌入到Crossformer中,以填补Crossformer无法有效处理非高斯噪声的空白;最后,利用改进的预测模型进行超短期负荷预测,经潮流计算得到节点伪量测,在量测不足情况下补全缺失数据,并结合扩展卡尔曼滤波器(extended Kalman filter,EKF)进行状态估计。在IEEE 33节点和IEEE 118节点标准配电网上进行仿真测试,结果表明所提方法在估计精度和鲁棒性等方面具有一定优势,可为主动配电网FASE提供参考。