For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the freque...For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.展开更多
当使用线性自抗扰控制器(linear active disturbance rejection controller,LADRC)控制时滞系统时,闭环系统的稳定性与控制器参数的选取有较大的关系.如何定量求取线性自抗扰针对时滞系统的参数稳定域还没有有效的方法.本文针对线性自...当使用线性自抗扰控制器(linear active disturbance rejection controller,LADRC)控制时滞系统时,闭环系统的稳定性与控制器参数的选取有较大的关系.如何定量求取线性自抗扰针对时滞系统的参数稳定域还没有有效的方法.本文针对线性自抗扰控制器控制一阶时滞系统,利用双轨迹法精确求解出了线性自抗扰控制器参数的稳定域.该方法利用双轨迹的图形性质,有效地将求解具有时滞的控制系统闭环特征方程根的分布问题转化为求解双轨迹交点频率的问题,从而得到能够保证闭环系统稳定性的控制器参数稳定域.求得的稳定域为时滞系统线性自抗扰控制器的整定提供了理论依据.仿真结果验证了所提出方法的有效性.展开更多
为了消除调速器死区非线性对系统的影响和保证系统稳定,针对存在调速器死区的负荷频率控制(load frequency control,LFC)系统,采用了自抗扰控制(active disturbance rejection control,ADRC)方法,并通过描述函数法验证控制方法的有效性...为了消除调速器死区非线性对系统的影响和保证系统稳定,针对存在调速器死区的负荷频率控制(load frequency control,LFC)系统,采用了自抗扰控制(active disturbance rejection control,ADRC)方法,并通过描述函数法验证控制方法的有效性。提出死区线性化方法,并采用了广义自抗扰控制(generalized active disturbance rejection control,GADRC)方法。为能有效地消除死区非线性,提出了一种误差补偿策略。仿真结果显示,提出的误差补偿策略能有效地消除死区非线性,保证了系统的控制性能。提出通过描述函数法获得补偿系数的取值范围也是可行。展开更多
基金supported by the National Natural Science Foundation of China(61973175,61973172,62073177)the Key Technologies R&D Program of Tianjin(19JCZDJC32800)Tianjin Research Innovation Project for Postgraduate Students(2020YJSZXB02).
文摘For the typical first-order systems with time-delay,this paper explors the control capability of linear active disturbance rejection control(LADRC).Firstly,the critical time-delay of LADRC is analyzed using the frequency-sweeping method and the Routh criterion,and the stable time-delay interval starting from zero is accurately obtained,which reveals the limitations of general LADRC on large time-delay.Then in view of the large time-delay,an LADRC controller is developed and verified to be effective,along with the robustness analysis.Finally,numerical simulations show the accuracy of critical time-delay,and demonstrate the effectiveness and robustness of the proposed controller compared with other modified LADRCs.
文摘当使用线性自抗扰控制器(linear active disturbance rejection controller,LADRC)控制时滞系统时,闭环系统的稳定性与控制器参数的选取有较大的关系.如何定量求取线性自抗扰针对时滞系统的参数稳定域还没有有效的方法.本文针对线性自抗扰控制器控制一阶时滞系统,利用双轨迹法精确求解出了线性自抗扰控制器参数的稳定域.该方法利用双轨迹的图形性质,有效地将求解具有时滞的控制系统闭环特征方程根的分布问题转化为求解双轨迹交点频率的问题,从而得到能够保证闭环系统稳定性的控制器参数稳定域.求得的稳定域为时滞系统线性自抗扰控制器的整定提供了理论依据.仿真结果验证了所提出方法的有效性.
文摘为了消除调速器死区非线性对系统的影响和保证系统稳定,针对存在调速器死区的负荷频率控制(load frequency control,LFC)系统,采用了自抗扰控制(active disturbance rejection control,ADRC)方法,并通过描述函数法验证控制方法的有效性。提出死区线性化方法,并采用了广义自抗扰控制(generalized active disturbance rejection control,GADRC)方法。为能有效地消除死区非线性,提出了一种误差补偿策略。仿真结果显示,提出的误差补偿策略能有效地消除死区非线性,保证了系统的控制性能。提出通过描述函数法获得补偿系数的取值范围也是可行。