期刊文献+
共找到15,595篇文章
< 1 2 250 >
每页显示 20 50 100
High-efficiency wide-angle anomalous refraction with acoustic metagrating
1
作者 Kangyao Sun Yuancheng Fan +4 位作者 Zhehao Ye Jiahui Li Quanhong Fu Yali Zeng Fuli Zhang 《Chinese Physics B》 2025年第1期368-372,共5页
The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and w... The emergent metagrating,with its unique and flexible beam shaping capabilities,offers new paths to efficient modulation of acoustic waves.In this work,an acoustic metagrating is demonstrated for high-efficiency and wide-angle anomalous refraction.It is shown that the normal reflection and transmission can be totally suppressed by properly modulating the amplitude and phase characteristics of the metagrating supercells for high-efficiency anomalous refraction.The anomalous refraction behavior is achieved in the wide range of incident angles from 28°to 78°,and the efficiency of-1st order diffraction is higher than 90%by finely designing the metagrating structure.The anomalous refraction behaviors are verified experimentally at incidence angle of 28°,45°,and 78°,respectively.The demonstrated metagrating is anticipated to possess efficient wide-angle composite wavefront engineering applications in such fields as communications. 展开更多
关键词 acoustic metagrating beam steering wide-angle anomalous refraction
在线阅读 下载PDF
Cyclic loading of marble:Correlating the attenuation of the electric and acoustic activities and highlighting criticality indices in terms of natural time
2
作者 Dimos Triantis Ilias Stavrakas +1 位作者 Ermioni D.Pasiou Stavros K.Kourkoulis 《International Journal of Mining Science and Technology》 2025年第2期159-174,共16页
The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-fail... The attenuation of the acoustic activity in marble specimens under uniaxial compressive loadingunloading loops is quantified in juxtaposition to that of the electric activity.In parallel,the existence of"pre-failure indiceso"warning about entrance into a critical stage,that of impending fracture,is explored.The acoustic activity is quantified in terms of the normalized number of acoustic hits,their average rate of production and their cumulative energy,and,the cumulative counts and their average rate of change.The electric activity is studied in terms of the pressure stimulated currents and the electric charge released.The analysis revealed that the acoustic and electric activities are linearly correlated to each other,suggesting that they are different manifestations of the same damage mechanisms.In addition,Kaiser's effect,governing the acoustic activity,is found to govern,also,the electric activity.Moreover,it is concluded that entrance into the critical stage is safely predicted by means of a simple criterion,based on the evolution of the average rate of change of the normalized cumulative counts in the natural time domain.These predictions are almost identical with those of the criterion based on the "varianceo" and the "entropies" of the time series of acoustic events in this domain. 展开更多
关键词 Marble cyclic loading acoustic emissions Kaiser's effect Pressure stimulated currents Criticality indices Natural time
在线阅读 下载PDF
Development and prospect of acoustic reflection imaging logging processing and interpretation method 被引量:1
3
作者 LI Ning LIU Peng +5 位作者 WU Hongliang LI Yusheng ZHANG Wenhao WANG Kewen FENG Zhou WANG Hao 《Petroleum Exploration and Development》 SCIE 2024年第4期839-851,共13页
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th... Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology. 展开更多
关键词 acoustic reflection imaging monopole P-waves dipole S-waves horizontal well acoustic reflection imaging 3D imaging well logging-seismic integration CIFLog software
在线阅读 下载PDF
Enhancing microseismic/acoustic emission source localization accuracy with an outlier-robust kernel density estimation approach 被引量:1
4
作者 Jie Chen Huiqiong Huang +4 位作者 Yichao Rui Yuanyuan Pu Sheng Zhang Zheng Li Wenzhong Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第7期943-956,共14页
Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust l... Monitoring sensors in complex engineering environments often record abnormal data,leading to significant positioning errors.To reduce the influence of abnormal arrival times,we introduce an innovative,outlier-robust localization method that integrates kernel density estimation(KDE)with damping linear correction to enhance the precision of microseismic/acoustic emission(MS/AE)source positioning.Our approach systematically addresses abnormal arrival times through a three-step process:initial location by 4-arrival combinations,elimination of outliers based on three-dimensional KDE,and refinement using a linear correction with an adaptive damping factor.We validate our method through lead-breaking experiments,demonstrating over a 23%improvement in positioning accuracy with a maximum error of 9.12 mm(relative error of 15.80%)—outperforming 4 existing methods.Simulations under various system errors,outlier scales,and ratios substantiate our method’s superior performance.Field blasting experiments also confirm the practical applicability,with an average positioning error of 11.71 m(relative error of 7.59%),compared to 23.56,66.09,16.95,and 28.52 m for other methods.This research is significant as it enhances the robustness of MS/AE source localization when confronted with data anomalies.It also provides a practical solution for real-world engineering and safety monitoring applications. 展开更多
关键词 Microseismic source/acoustic emission(MS/AE) Kernel density estimation(KDE) Damping linear correction Source location Abnormal arrivals
在线阅读 下载PDF
Differences in the acoustic characteristics of DC bias alternating arcs in argon,helium,and nitrogen
5
作者 Yutai Li Qinghao Wen +7 位作者 Yangyang Fu Xiaobing Zou Handong Li Zhigang Liu Haiyun Luo Dun Qian Zhe Chen Xinxin Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期341-350,共10页
The acoustic effects of gas discharge plasma have received much attention.Previous studies have shown that cold plasma and thermal plasma have different principles of sound generation.In this paper,the differences in ... The acoustic effects of gas discharge plasma have received much attention.Previous studies have shown that cold plasma and thermal plasma have different principles of sound generation.In this paper,the differences in the acoustic characteristics of DC bias alternating arc plasma(thermal plasma)in different gas environments(argon,helium,and nitrogen)are investigated by combining experiments and simulations.Many processes in industrial machining involve this arc plasma.It was found that the acoustic characteristics of the arcs of these three gases are significantly different.The two key parameters,electrical and thermal conductivity of the gas,determine the acoustic characteristics of the arc by influencing the electric power of the arc and the heat dissipation through the anode.At the same drive current,the nitrogen arc has the largest voltage drop and the helium arc has the highest electroacoustic conversion efficiency.This results in the acoustic pressure amplitude being helium,nitrogen,and argon in descending order.The research contributes to a deeper understanding of the vocalization mechanism of arc plasma and provides theoretical guidance on gas selection for arc acoustic wave applications. 展开更多
关键词 arc discharge gas discharge and plasma arc acoustic wave acoustic characteristics
在线阅读 下载PDF
Scheme of negative acoustic radiation force based on a multiple-layered spherical structure
6
作者 宫门阳 徐鑫 +3 位作者 乔玉配 刘杰惠 何爱军 刘晓宙 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期477-487,共11页
Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has... Acoustic radiation force(ARF), as an important particle manipulation method, has been extensively studied in recent years. With the introduction of the concept of “acoustic tweezers”, negative acoustic radiation has become a research hotspot. In this paper, a scheme of realizing negative ARF based on the multiple-layered spherical structure design is proposed. The specific structure and design idea are presented. Detailed theoretical calculation analysis is carried out.Numerical simulations have been performed to verify the correctness of this prediction. The conjecture that the suppression of backscattering can achieve negative ARF is verified concretely, which greatly expands the application prospect and design ideas of the ARF. This work has laid a theoretical foundation for realizing precise control of the structure. 展开更多
关键词 acoustic tweezers negative acoustic radiation force particle manipulation
在线阅读 下载PDF
Acoustic radiation force on a cylindrical composite particle with an elastic thin shell and an internal eccentric liquid column in a plane ultrasonic wave field
7
作者 Rui-Qi Pan Zhi-Wei Du +2 位作者 Cheng-Hui Wang Jing Hu Run-Yang Mo 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期423-431,共9页
A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF... A model with three-layer structure is introduced to explore the acoustic radiation force(ARF)on composite particles with an elastic thin shell.Combing acoustic scattering of cylinder and the thin-shell theorem,the ARF expression was derived,and the longitudinal and transverse components of the force and axial torque for an eccentric liquid-filled composite particle was obtained.It was found that many factors,such as medium properties,acoustic parameters,eccentricity,and radius ratio of the inner liquid column,affect the acoustic scattering field of the particle,which in turn changes the forces and torque.The acoustic response varies with the particle structures,so the resonance peaks of the force function and torque shift with the eccentricity and radii ratio of particle.The acoustic response of the particle is enhanced and exhibits higher force values due to the presence of the elastic thin shell and the coupling effect with the eccentricity of the internal liquid column.The decrease of the inner liquid density may suppress the high-order resonance peaks,and internal fluid column has less effects on the change in force on composite particle at ka>3,while limited differences exist at ka<3.The axial torque on particles due to geometric asymmetry is closely related to ka and the eccentricity.The distribution of positive and negative force and torque along the axis ka exhibits that composite particle can be manipulated or separated by ultrasound.Our theoretical analysis can provide support for the acoustic manipulation,sorting,and targeting of inhomogeneous particles. 展开更多
关键词 acoustic radiation force acoustic scattering of cylinders elastic shell composite particles
在线阅读 下载PDF
Wireless Information and Power Transfer in Underwater Acoustic Sensor Networks
8
作者 Feng Yizhi Ji Fei 《China Communications》 SCIE CSCD 2024年第10期256-266,共11页
Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the te... Wireless information and power transfer(WIPT) enables simultaneously communications and sustainable power supplement without the erection of power supply lines and the replacement operation of the batteries for the terminals. The application of WIPT to the underwater acoustic sensor networks(UWASNs) not only retains the long range communication capabilities, but also provides an auxiliary and convenient energy supplement way for the terminal sensors, and thus is a promising scheme to solve the energy-limited problem for the UWASNs. In this paper, we propose the integration of WIPT into the UWASNs and provide an overview on various enabling techniques for the WIPT based UWASNs(WIPT-UWASNs) as well as pointing out future research challenges and opportunities for WIPT-UWASNs. 展开更多
关键词 underwater acoustic modem underwater acoustic sensor network(UWASN) wireless information and power transfer(WIPT)
在线阅读 下载PDF
A Self-Healing Optoacoustic Patch with High Damage Threshold and Conversion Efficiency for Biomedical Applications
9
作者 Tao Zhang Cheng-Hui Li +7 位作者 Wenbo Li Zhen Wang Zhongya Gu Jiapu Li Junru Yuan Jun Ou-Yang Xiaofei Yang Benpeng Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期31-45,共15页
Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.How... Compared with traditional piezoelectric ultrasonic devices,optoacoustic devices have unique advantages such as a simple preparation process,anti-electromagnetic interference,and wireless long-distance power supply.However,current optoacoustic devices remain limited due to a low damage threshold and energy conversion efficiency,which seriously hinder their widespread applications.In this study,using a self-healing polydimethylsiloxane(PDMS,Fe-Hpdca-PDMS)and carbon nanotube composite,a flexible optoacoustic patch is developed,which possesses the self-healing capability at room temperature,and can even recover from damage induced by cutting or laser irradiation.Moreover,this patch can generate high-intensity ultrasound(>25 MPa)without the focusing structure.The laser damage threshold is greater than 183.44 mJ cm^(-2),and the optoacoustic energy conversion efficiency reaches a major achievement at 10.66×10^(-3),compared with other carbon-based nanomaterials and PDMS composites.This patch is also been successfully examined in the application of acoustic flow,thrombolysis,and wireless energy harvesting.All findings in this study provides new insight into designing and fabricating of novel ultrasound devices for biomedical applications. 展开更多
关键词 Optoacoustic Self-healing PDMS acoustic flow THROMBOLYTIC Wireless energy harvesting
在线阅读 下载PDF
Orbital angular momentum conversion of acoustic vortex beams via planar lattice coupling
10
作者 Qingbang Han Zhipeng Liu +9 位作者 Cheng Yin Simeng Wu Yinlong Luo Zixin Yang Xiuyang Pang Yiqiu Wang Xuefen Kan Yuqiu Zhang Qiang Yu Jian Wu 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期413-420,共8页
Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that ... Orbital angular momentum(OAM)conversion is critical in understanding interactions between a structural sound field and a planar lattice.Herein,we explore the evolution of a monochromatic acoustic vortex beam(AVB)that is scattered by a phononic crystal(PnC)or a correlated random lattice.The phenomenon is ascribed to the enhanced orbit–orbit angular momentum coupling induced by the band structure.By modifying the coupling condition,accurate and continuous micromanipulation of AVBs can be achieved,including the transverse/lateral gravity shift,the dynamics of the phase singularities,and the spatial distribution of acoustic pressure,etc.This research provides insight to the inhomogeneous coupling of AVBs with both propagating Bloch waves and localized Anderson modes,and may facilitate development of novel OAM-based acoustic devices for active sound field manipulation. 展开更多
关键词 acoustic vortex beam phononic crystal Anderson localization Imbert-Fedorov effect
在线阅读 下载PDF
Ion acoustic solitary waves in an adiabatic dusty plasma:Roles of superthermal electrons,ion loss and ionization
11
作者 饶强华 陈辉 +1 位作者 刘三秋 陈小昌 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期337-342,共6页
We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to deri... We investigate propagation of dust ion acoustic solitary wave(DIASW)in a multicomponent dusty plasma with adiabatic ions,superthermal electrons,and stationary dust.The reductive perturbation method is employed to derive the damped Korteweg-de Vries(DKdV)equation which describes DIASW.The result reveals that the adiabaticity of ions significantly modifies the basic features of the DIASW.The ionization effect makes the solitary wave grow,while collisions reduce the growth rate and even lead to the damping.With the increases in ionization cross sectionΔσ/σ_(0),ion-to-electron density ratioδ_(ie)and superthermal electrons parameterκ,the effect of ionization on DIASW enhances. 展开更多
关键词 dust ion acoustic wave solitary wave IONIZATION adiabatic process
在线阅读 下载PDF
2D DOA Estimation of Coherent Signals with a Separated Linear Acoustic Vector-Sensor Array
12
作者 Sheng Liu Jing Zhao +2 位作者 Decheng Wu Yiwang Huang Kaiwu Luo 《China Communications》 SCIE CSCD 2024年第2期155-165,共11页
In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spat... In this paper, a two-dimensional(2D) DOA estimation algorithm of coherent signals with a separated linear acoustic vector-sensor(AVS) array consisting of two sparse AVS arrays is proposed. Firstly,the partitioned spatial smoothing(PSS) technique is used to construct a block covariance matrix, so as to decorrelate the coherency of signals. Then a signal subspace can be obtained by singular value decomposition(SVD) of the covariance matrix. Using the signal subspace, two extended signal subspaces are constructed to compensate aperture loss caused by PSS.The elevation angles can be estimated by estimation of signal parameter via rotational invariance techniques(ESPRIT) algorithm. At last, the estimated elevation angles can be used to estimate automatically paired azimuth angles. Compared with some other ESPRIT algorithms, the proposed algorithm shows higher estimation accuracy, which can be proved through the simulation results. 展开更多
关键词 acoustic vector-sensor coherent signals extended signal subspace sparse array
在线阅读 下载PDF
Identifying the real fracture hidden in rock microcrack zone by acoustic emission energy
13
作者 Yuekun Xing Bingxiang Huang +6 位作者 Guangqing Zhang Binghong Li Hang Xu Xuejie Jiao Yang Yu Taisen Han Jinlong Chen 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第6期731-746,共16页
Identifying the real fracture of rock hidden in acoustic emission(AE)source clusters(AE-depicted microcrack zone)remains challenging and crucial.Here we revealed the AE energy(representing dissipated energy)distributi... Identifying the real fracture of rock hidden in acoustic emission(AE)source clusters(AE-depicted microcrack zone)remains challenging and crucial.Here we revealed the AE energy(representing dissipated energy)distribution rule in the rock microcrack zone and proposed an AE-energy-based method for identifying the real fracture.(1)A set of fracture experiments were performed on granite using wedgeloading,and the fracture process was detected and recorded by AE.The microcrack zone associated with the energy dissipation was characterized by AE sources and energy distribution,utilizing our selfdeveloped AE analysis program(RockAE).(2)The accumulated AE energy,an index representing energy dissipation,across the AE-depicted microcrack zone followed the normal distribution model(the mean and variance relate to the real fracture path and the microcrack zone width).This result implies that the nucleation and coalescence of massive cracks(i.e.,real fracture generation process)are supposed to follow a normal distribution.(3)Then,we obtained the real fracture extension path by joining the peak positions of the AE energy normal distribution curve at different cross-sections of the microcrack zone.Consequently,we distinguished between the microcrack zone and the concealed real fracture within it.The deviation was validated as slight as 1–3 mm. 展开更多
关键词 GeoEnergy exploitation Rock fracture Fracture identification acoustic emission AE energy analysis
在线阅读 下载PDF
Simplified prediction models for acoustic installation effects of train-mounted equipment
14
作者 David Thompson Dong Zhao Giacomo Squicciarini 《Railway Engineering Science》 EI 2024年第2期125-143,共19页
Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test b... Acoustic models of railway vehicles in standstill and pass-by conditions can be used as part of a virtual certification process for new trains.For each piece of auxiliary equipment,the sound power measured on a test bench is combined with meas-ured or predicted transfer functions.It is important,however,to allow for installation effects due to shielding by fairings or the train body.In the current work,fast-running analytical models are developed to determine these installation effects.The model for roof-mounted sources takes account of diffraction at the corner of the train body or fairing,using a barrier model.For equipment mounted under the train,the acoustic propagation from the sides of the source is based on free-field Green’s functions.The bottom surfaces are assumed to radiate initially into a cavity under the train,which is modelled with a simple diffuse field approach.The sound emitted from the gaps at the side of the cavity is then assumed to propagate to the receivers according to free-field Green’s functions.Results show good agreement with a 2.5D boundary element model and with measurements.Modelling uncertainty and parametric uncertainty are evaluated.The largest variability occurs due to the height and impedance of the ground,especially for a low receiver.This leads to standard deviations of up to 4 dB at low frequencies.For the roof-mounted sources,uncertainty over the location of the corner used in the equivalent barrier model can also lead to large standard deviations. 展开更多
关键词 Train noise Auxiliary equipment acoustic installation effects Virtual certification UNCERTAINTY
在线阅读 下载PDF
Nonlinear ion acoustic waves in multicomponent plasmas with nonthermal electrons-positron and bipolar ions
15
作者 Mai-Mai Lin Chen-Guang Song +1 位作者 Fu-Yan Chen Ming-Yue Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期324-332,共9页
This paper studied the propagating characteristics of(2+1)-dimensional nonlinear ion acoustic waves in a multicomponent plasma with nonthermal electrons,positrons,and bipolar ions.The dispersion relations are initiall... This paper studied the propagating characteristics of(2+1)-dimensional nonlinear ion acoustic waves in a multicomponent plasma with nonthermal electrons,positrons,and bipolar ions.The dispersion relations are initially explored by using the small amplitude wave's dispersion relation.Then,the Sagdeev potential method is employed to study large amplitude ion acoustic waves.The analysis involves examining the system's phase diagram,Sagdeev potential function,and solitary wave solutions through numerical solution of an analytical process in order to investigate the propagation properties of nonlinear ion acoustic waves under various parameters.It is found that the propagation of nonlinear ion acoustic waves is subject to the influence of various physical parameters,including the ratio of number densities between the unperturbed positrons,electrons to positive ions,nonthermal parameters,the mass ratio of positive ions to negative ions,and the charge number ratio of negative ions to positive ions,the ratio of the electrons'temperature to positrons'temperature.In addition,the multicomponent plasma system has a compressive solitary waves with amplitude greater than zero or a rarefactive solitary waves with amplitude less than zero,in the meantime,compressive and rarefactive ion acoustic wave characteristics depend on the charge number ratio of negative ions to positive ions. 展开更多
关键词 nonlinear ion acoustic waves nonthermal electrons bipolar ions Sagdeev potential method
在线阅读 下载PDF
Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal
16
作者 熊俊 卢诗宇 +3 位作者 刘晓明 周文俊 查晓明 裴学凯 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期64-72,共9页
Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less com... Discharge plasma parameter measurement is a key focus in low-temperature plasma research.Traditional diagnostics often require costly equipment,whereas electro-acoustic signals provide a rich,non-invasive,and less complex source of discharge information.This study harnesses machine learning to decode these signals.It establishes links between electro-acoustic signals and gas discharge parameters,such as power and distance,thus streamlining the prediction process.By building a spark discharge platform to collect electro-acoustic signals and implementing a series of acoustic signal processing techniques,the Mel-Frequency Cepstral Coefficients(MFCCs)of the acoustic signals are extracted to construct the predictors.Three machine learning models(Linear Regression,k-Nearest Neighbors,and Random Forest)are introduced and applied to the predictors to achieve real-time rapid diagnostic measurement of typical spark discharge power and discharge distance.All models display impressive performance in prediction precision and fitting abilities.Among them,the k-Nearest Neighbors model shows the best performance on discharge power prediction with the lowest mean square error(MSE=0.00571)and the highest R-squared value(R^(2)=0.93877).The experimental results show that the relationship between the electro-acoustic signal and the gas discharge power and distance can be effectively constructed based on the machine learning algorithm,which provides a new idea and basis for the online monitoring and real-time diagnosis of plasma parameters. 展开更多
关键词 discharge plasma plasma real-time diagnosis electro-acoustic signal machine learning acoustic signature
在线阅读 下载PDF
Large-scale particle trapping by acoustic vortices with a continuously variable topological charge
17
作者 庄昊霏 张清源 +2 位作者 胡格昊 王青东 杜立彬 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期398-406,共9页
Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the a... Strengthened directivity with higher-order side lobes can be generated by the transducer with a larger radius at a higher frequency. The multi-annular pressure distributions are displayed in the cross-section of the acoustic vortices(AVs)which are formed by side lobes. In the near field, particles can be trapped in the valley region between the two annuli of the pressure peak, and cannot be moved to the vortex center. In this paper, a trapping method based on a sector transducer array is proposed, which is characterized by the continuously variable topological charge(CVTC). This acoustic field can not only enlarge the range of particle trapping but also improve the aggregation degree of the trapped particles. In the experiments, polyethylene particles with a diameter of 0.2 mm are trapped into the multi-annular valleys by the AV with a fixed topological charge. Nevertheless, by applying the CVTC, particles outside the radius of the AV can cross the pressure peak successfully and move to the vortex center. Theoretical studies are also verified by the experimental particles trapping using the AV with the continuous variation of three topological charges, and suggest the potential application of large-scale particle trapping in biomedical engineering. 展开更多
关键词 acoustic vortices sector transducer array trapping particle continuously variable topological charge
在线阅读 下载PDF
Effects of confining pressure and pore pressure on multipole borehole acoustic field in fluid-saturated porous media
18
作者 赵志强 刘金霞 +1 位作者 刘建宇 崔志文 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期468-476,共9页
In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated por... In-situ stress is a common stress in the exploration and development of oil reservoirs. Therefore, it is of great significance to study the propagation characteristics of borehole acoustic waves in fluid-saturated porous media under stress.Based on the acoustoelastic theory of fluid-saturated porous media, the field equation of fluid-saturated porous media under the conditions of confining pressure and pore pressure and the acoustic field formula of multipole source excitation in open hole are given. The influences of pore pressure and confining pressure on guided waves of multipole borehole acoustic field in fluid-saturated porous media are investigated. The numerical results show that the phase velocity and excitation intensity of guided wave increase significantly under the confining pressure. For a given confining pressure, the phase velocity of the guided wave decreases with pore pressure increasing. The excitation intensity of guided wave increases at low frequency and then decreases at high frequency with pore pressure increasing, except for that of Stoneley wave which decreases in the whole frequency range. These results will help us get an insight into the influences of confining pressure and pore pressure on the acoustic field of multipole source in borehole around fluid-saturated porous media. 展开更多
关键词 confining pressure pore pressure fluid-saturated porous media multipole borehole acoustic field
在线阅读 下载PDF
Extraction of reflected waves from acoustic logging data using variation mode decomposition and curvelet transform
19
作者 Fan-Tong Kong Yong-Xiang Liu +3 位作者 Xi-Hao Gu Li Zhen Cheng-Ming Luo Sheng-Qing Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第5期3142-3156,共15页
Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, ... Remote reflection waves, essential for acquiring high-resolution images of geological structures beyond boreholes, often suffer contamination from strong direct mode waves propagating along the borehole.Consequently, the extraction of weak reflected waves becomes pivotal for optimizing migration image quality. This paper introduces a novel approach to extracting reflected waves by sequentially operating in the spatial frequency and curvelet domains. Using variation mode decomposition(VMD), single-channel spatial domain signals within the common offset gather are iteratively decomposed into high-wavenumber and low-wavenumber intrinsic mode functions(IMFs). The low-wavenumber IMF is then subtracted from the overall waveform to attenuate direct mode waves. Subsequently, the curvelet transform is employed to segregate upgoing and downgoing reflected waves within the filtered curvelet domain. As a result, direct mode waves are substantially suppressed, while the integrity of reflected waves is fully preserved. The efficacy of this approach is validated through processing synthetic and field data, underscoring its potential as a robust extraction technique. 展开更多
关键词 Borehole acoustic reflection imaging Variation mode decomposition Curvelet transform Weak signal extraction
在线阅读 下载PDF
High-order Bragg forward scattering and frequency shift of low-frequency underwater acoustic field by moving rough sea surface
20
作者 莫亚枭 张朝金 +2 位作者 鹿力成 孙启航 马力 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期459-470,共12页
Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a movi... Acoustic scattering modulation caused by an undulating sea surface on the space-time dimension seriously affects underwater detection and target recognition.Herein,underwater acoustic scattering modulation from a moving rough sea surface is studied based on integral equation and parabolic equation.And with the principles of grating and constructive interference,the mechanism of this acoustic scattering modulation is explained.The periodicity of the interference of moving rough sea surface will lead to the interference of the scattering field at a series of discrete angles,which will form comb-like and frequency-shift characteristics on the intensity and the frequency spectrum of the acoustic scattering field,respectively,which is a high-order Bragg scattering phenomenon.Unlike the conventional Doppler effect,the frequency shifts of the Bragg scattering phenomenon are multiples of the undulating sea surface frequency and are independent of the incident sound wave frequency.Therefore,even if a low-frequency underwater acoustic field is incident,it will produce obvious frequency shifts.Moreover,under the action of ideal sinusoidal waves,swells,fully grown wind waves,unsteady wind waves,or mixed waves,different moving rough sea surfaces create different acoustic scattering processes and possess different frequency shift characteristics.For the swell wave,which tends to be a single harmonic wave,the moving rough sea surface produces more obvious high-order scattering and frequency shifts.The same phenomena are observed on the sea surface under fully grown wind waves,however,the frequency shift slightly offsets the multiple peak frequencies of the wind wave spectrum.Comparing with the swell and fully-grown wind waves,the acoustic scattering and frequency shift are not obvious for the sea surface under unsteady wind waves. 展开更多
关键词 high-order Bragg scattering frequency shift low-frequency acoustic field moving rough sea surface
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部