Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to ca...Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.展开更多
Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is n...Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.展开更多
As the offshore life and production base,the offshore platform plays an important role in offshore oil exploitation.The acoustic emission(AE)technology can be applied to damage detection and early warning of the offsh...As the offshore life and production base,the offshore platform plays an important role in offshore oil exploitation.The acoustic emission(AE)technology can be applied to damage detection and early warning of the offshore platform,and then can effectively guarantee the safe operation of the offshore platform,prevent accidents and casualties.The steel jacket offshore platform is currently the most widely used in shallow sea oil field of our country.Considering the complex structure of the steel jacket offshore platform and using AE technology,this paper has carried on research on effects of the pipe diameter size,the welding angle on the AE signal propagation characteristics,and at the same time,influence of the marine environment(seawater temperature,salinity)on the AE testing.These research contents have very important reference value for the application of the AE technology in offshore platform monitoring.展开更多
基金supported by the National Natural Science Foundation of China (51075068)the Southeast University Science Foundation Funded Program (KJ2009348)
文摘Due to defects of time-difference of arrival localization,which influences by speed differences of various model waveforms and waveform distortion in transmitting process,a neural network technique is introduced to calculate localization of the acoustic emission source.However,in back propagation(BP) neural network,the BP algorithm is a stochastic gradient algorithm virtually,the network may get into local minimum and the result of network training is dissatisfactory.It is a kind of genetic algorithms with the form of quantum chromosomes,the random observation which simulates the quantum collapse can bring diverse individuals,and the evolutionary operators characterized by a quantum mechanism are introduced to speed up convergence and avoid prematurity.Simulation results show that the modeling of neural network based on quantum genetic algorithm has fast convergent and higher localization accuracy,so it has a good application prospect and is worth researching further more.
基金Projects(51204206,41272304,41372278) supported by the National Natural Science Foundation of ChinaProject(20110162120057) supported by Ph D Program Foundation of Ministry of Education ChinaProject(201012200232) supported by the Freedom Explore Program of Central South University,China
文摘Acoustic emission tests were performed using a split Hopkinson pressure bar system(SHPB) on 50-mm-diameter bars of granite, limestone, sandstone and skarn. The results show that the amplitude distribution of hits is not well centralized around 50 d B, and that some hits with large amplitudes, usually larger than 70 d B, occur in the early stages of each test, which is different from the findings from static and low-loading-rate tests. Furthermore, the dominant frequency range of the recorded acoustic emission waveforms is between 300 k Hz and 500 k Hz, and frequency components higher than 500 k Hz are not significant. The hit with the largest values of amplitude, counts, signal strength, and absolute energy in each test, displays a waveform with similar frequency characteristics and greater correlation with the waveform obtained from the elastic input bar of the split Hopkinson pressure bar system compared with the waveforms of the other hits. This indicates that the hit with the largest values of amplitude, counts, signal strength, and absolute energy is generated by elastic wave propagation instead of fracture within the rock specimen.
基金financially supported by the National Natural Science Foundation of China (No.50875016)
文摘As the offshore life and production base,the offshore platform plays an important role in offshore oil exploitation.The acoustic emission(AE)technology can be applied to damage detection and early warning of the offshore platform,and then can effectively guarantee the safe operation of the offshore platform,prevent accidents and casualties.The steel jacket offshore platform is currently the most widely used in shallow sea oil field of our country.Considering the complex structure of the steel jacket offshore platform and using AE technology,this paper has carried on research on effects of the pipe diameter size,the welding angle on the AE signal propagation characteristics,and at the same time,influence of the marine environment(seawater temperature,salinity)on the AE testing.These research contents have very important reference value for the application of the AE technology in offshore platform monitoring.