Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to inv...Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.展开更多
This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimenta...This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimental measurements and theoretical calculations,we propose a novel three-factor competition mechanism to explain this phenomenon.TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s,surpassing HMX-based counterparts.However,cylinder expansion tests revealed a 15%reduction in metal acceleration ability.Thermochemical measurements showed lower detonation heat for TKX-50(4900 J/g)versus HMX(5645 J/g).Our mechanism involves:(1)compositional effects prevailing at high pressures;(2)Energy release becoming essential as pressure drops;(3)Pressure-dependent product composition evolution functioning at low pressure.VLW code calculations unveiled a"crossover"in Hugoniot curves,lending support to this mechanism.This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials,with significant implications for the design and optimization of future high-energy density materials.展开更多
Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground wa...Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.展开更多
This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment confi...This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment configuration,sequentially using nitrogen nucleus tandem near range accelerated polarization target spallation nuclear reaction technology,neutron multiplication technology,neutron beam polarization and near range acceleration technology,neutron focusing and shooting control technology.Through design and equivalent verification,it has been proven that the total length of the device does not exceed 5 m,the effective range can reach several hundred kilometers,the neutron flux at the muzzle is not less than 10^(25) n·cm^(-2)·s^(-1),which attenuates to 10^(10) n·cm^(-2)·s^(-1) at a distance of several 100 km,and this flux can effectively strike the target.It can be used as a defensive directed energy weapon with high energy density and has broad application prospects.展开更多
In this study,a GC-MS/SIM method was used to analyze 16 PAHs in soil by ASE on-line clean-up.The average recoveries were ranged from 67% to 129%.The relative standard deviations were between 2.7% and 21.1%.The calcula...In this study,a GC-MS/SIM method was used to analyze 16 PAHs in soil by ASE on-line clean-up.The average recoveries were ranged from 67% to 129%.The relative standard deviations were between 2.7% and 21.1%.The calculated limits of detection were no more than 0.95 ng/g.This method was fast,simple,and cost-saving,and can be used in the large quantities of samples analysis.展开更多
36Cl, the long-lived radioactive nuclide, exists abroadly in atmosphere and lithosphere. Erosions and exposure ages of rocks can be determined by measuring 36Cl concentration in rocks. In recent years, accelerator mas...36Cl, the long-lived radioactive nuclide, exists abroadly in atmosphere and lithosphere. Erosions and exposure ages of rocks can be determined by measuring 36Cl concentration in rocks. In recent years, accelerator mass spectrometry (AMS) is the only effective tool to measure 36Cl. In the present work, the method of 36Cl measurement with AMS was researched, and the erosion rate of limestone at Shihuadong region of Beijing City was calculated with the method, the result obtained is (1.33±0.28)×10-5 m·a-1.展开更多
Labeled polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)were extracted by three different methods,i.e.,soxhlet extraction,hot extraction and accelerated solvent extraction(ASE).The PCDD/Fs were detected by...Labeled polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)were extracted by three different methods,i.e.,soxhlet extraction,hot extraction and accelerated solvent extraction(ASE).The PCDD/Fs were detected by high resolution gas chromatography-high resolution mass spectrometry.Comparisons of the three methods were carried out by recovery of PCDD/Fs,solvent consumption and extraction time.The results showed that all of the method could extract labeled PCDD/Fs efficiently.ASE was a time saving procedure with lowest consumption of solvents compared with the other two methods.展开更多
A rapid pretreatment method of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and analysis by high resolution gas chromatograph-high resolution mass spectrometry was present.The extraction and a...A rapid pretreatment method of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and analysis by high resolution gas chromatograph-high resolution mass spectrometry was present.The extraction and alumina clean up of PCDD/Fs in soil was achieved by accelerated solvent extractor.Then the multi-layer silica-gel column was used for further clean up.The whole method has been evaluated on certified reference soil and farm soil.Accuracy and precision of this method was tested with satisfactory results.展开更多
The measurement method for some radioisotope such as 99Tc, 182Hf, 151Sm is developing in China Institute of Atomic Energy (CIAE) accelerator mass spectrometry (AMS) system, and applications in the fields of nuclear ph...The measurement method for some radioisotope such as 99Tc, 182Hf, 151Sm is developing in China Institute of Atomic Energy (CIAE) accelerator mass spectrometry (AMS) system, and applications in the fields of nuclear physics, geosciences, life science and materials science is carried out. The brief introduction of these methods and applications are described in this paper.展开更多
26Al is one of important radionuclide, which applies to geology, biomedicine, nuclear physics, nuclear astrophysics, and so on. The measurement methods of 26Al by accelerator mass spectrometry (AMS) were introduced, i...26Al is one of important radionuclide, which applies to geology, biomedicine, nuclear physics, nuclear astrophysics, and so on. The measurement methods of 26Al by accelerator mass spectrometry (AMS) were introduced, including chimical treatment-ion exchange method and extract AlO- for AMS measurement.展开更多
西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传...西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传递规律。试验结果表明:反倾斜坡的抗震性能显著优于顺倾斜坡;顺倾斜坡的破坏模式主要为拉裂-剪切-隆起-滑移型破坏,反倾斜坡的破坏模式主要为拉伸-弯曲-倾倒-崩塌型破坏;反倾斜坡的自振频率高于顺倾斜坡,顺倾斜坡的自振频率随震级的增加而逐渐降低,而反倾斜坡的自振频率在地震波幅值为0.4g~0.7g时出现反复震荡现象;顺倾斜坡存在明显的高程放大效应和趋表效应,反倾斜坡存在高程放大效应,其内部的加速度响应大于坡表。边际谱识别显示:顺倾斜坡的边际谱幅值(peak of marginal spectrum amplitude,简称PMSA)突变在坡腰上部最显著,说明该位置附近地震波的能量损失最大,反映出顺倾斜坡在坡腰上部附近形成了滑动破坏面;反倾斜坡的PMSA在坡肩处降低得最为显著,反映出坡肩部位损伤最为严重,易发生局部崩塌破坏。分析结果与试验现象能够较好地吻合,进一步揭示了不同结构类型层状碎裂结构斜坡在强震作用下的动力响应与失稳破坏模式,为川藏铁路的安全建设提供了依据。展开更多
99Tc is a fission product, and it has high fission yield (6%) and very long half-life (2.1×105 a). With the movement of nucleus, the concentration of 99Tc is increasing in the circumstance. So it's important ...99Tc is a fission product, and it has high fission yield (6%) and very long half-life (2.1×105 a). With the movement of nucleus, the concentration of 99Tc is increasing in the circumstance. So it's important to measure the concentration of 99Tc in the circumstance, and accelerator mass spectrometry (AMS) might be the best method for 99Tc measurement. The 93Nb is used for AMS instrument normalization, sample matrix. And we used the difference of energy loss and deducting the isotope to measure the 99Tc in a series of standard samples. And the results show that the AMS is the feasible measurement method.展开更多
A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, str...A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy.展开更多
Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthqu...Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.展开更多
With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerate...With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is ...For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.展开更多
基金Dalian Science and Technology Innovation Fund Project (2022JJ11CG008)。
文摘Aiming to provide a theoretical basis for possible uses of flaxseed as a food supplement and functional ingredient, the heat treatment of flaxseed was carried out using steaming, roasting, and microwave methods to investigate the detoxification effects of these three pretreatment methods on flaxseed, as well as the impact of the three methods on the quality of flaxseed. The results showed that all three pretreatment methods had better detoxification effects on flaxseed, in which, microwave treatment was the most effective method. After 5 min of microwave treatment, the hydrogen cyanide(HCN) content in flaxseed decreased from(94.65±1.68) mg/kg to(7.80±0.57) mg/kg. All three pretreatment methods significantly reduced the water content in flaxseed but had a weaker effect on protein, fat, and ash contents. After pretreatment by the three methods, the polyphenol content, peroxide value(POV), and a*value of flaxseed increased significantly, thiobarbituric acid reactive substances(TBARS) increased, while polyunsaturated fatty acids(PUFA) content, amino acid content, and L*, W*, and b*values decreased, with varying degrees of wrinkles and cracks appearing on the surface of flaxseed, and the overall signal pattern of FTIR spectra did not change much. During the 40℃ accelerated storage process, the quality of flaxseed treated by all three preheating methods generally declined, and correlation analysis revealed that color change was a good indicator of quality changes in flaxseed. Notably, all three pretreatment methods extended the shelf-life of flaxseed. Compared with steaming(120℃ for 20 min) and roasting(100℃ for 40 min), microwave(560 W for 4 min) is recommended to remove cyanogenic glycosides and improve the stability and quality characteristics of flaxseed.
基金support provided by the National Natural Science Foundation of China(Grant No.12102405)the Presidential Foundation of CAEP(Grant No.YZJJZQ2023008).
文摘This study investigates the paradoxical detonation behavior of TKX-50,a nitrogen-rich energetic material,exhibiting higher detonation velocities but lower metal acceleration ability compared to HMX.Through experimental measurements and theoretical calculations,we propose a novel three-factor competition mechanism to explain this phenomenon.TKX-50-based PBX formulations achieved detonation velocities up to 9100 m/s,surpassing HMX-based counterparts.However,cylinder expansion tests revealed a 15%reduction in metal acceleration ability.Thermochemical measurements showed lower detonation heat for TKX-50(4900 J/g)versus HMX(5645 J/g).Our mechanism involves:(1)compositional effects prevailing at high pressures;(2)Energy release becoming essential as pressure drops;(3)Pressure-dependent product composition evolution functioning at low pressure.VLW code calculations unveiled a"crossover"in Hugoniot curves,lending support to this mechanism.This study furnishes a new framework for comprehending the performance of nitrogen-rich energetic materials,with significant implications for the design and optimization of future high-energy density materials.
基金Projects(52174096, 52304110) supported by the National Natural Science Foundation of China。
文摘Water is a critical factor affecting the mechanical properties of rocks, leading to their degradation. Understanding the creep mechanical behavior of deep roadway surrounding rock under the influence of underground water is of great significance. Compression and creep experiments on sandstone with varying water contents were conducted using a deep soft rock five-linked rheological experiment system. The experimental conditions, including water content (0%, 0.8%, 1.6%, 2.4% and 3.3%) and confining pressure (0, 6, 9 and 12 MPa), were determined based on pressure-free water absorption tests and in-situ stress measurements. The experimental results show that the compressive strength, creep failure stress, and dilatancy stress of sandstone decrease exponentially with increasing water content, while they increase exponentially with confining pressure. The ratio of lateral to axial instantaneous strain increases nearly linearly with the increase of stress, and the lateral creep strain characteristics of the sample are more significant than the axial ones. The duration of the attenuation creep stage of sandstone decreases with increasing water content and increases with increasing confining pressure. The lateral strain enters the steady-state creep stage before the axial strain, and the onset time of the accelerated creep stage of lateral strain under the failure stress is earlier than that of axial strain. The long-term strength of sandstone was determined based on the lateral steady-state creep rate curve, showing a negative exponential relationship with water content and a positive exponential relationship with confining pressure. A method for determining the long-term strength of rocks based on the ratio of lateral strain to axial strain (μc) is proposed, which is independent of water content. The research results provide a reliable theoretical basis for the analysis of the long-term stability of roadways under the influence of groundwater and the early prediction of creep failure.
基金sponsored by National Natural Science Foundation of China (Grant No. 12405215)
文摘This paper introduced a compact high flux polarized neutron beam generator scheme,which used air as the working medium and had low energy consumption.The neutron beam generator adopted a linear three compartment configuration,sequentially using nitrogen nucleus tandem near range accelerated polarization target spallation nuclear reaction technology,neutron multiplication technology,neutron beam polarization and near range acceleration technology,neutron focusing and shooting control technology.Through design and equivalent verification,it has been proven that the total length of the device does not exceed 5 m,the effective range can reach several hundred kilometers,the neutron flux at the muzzle is not less than 10^(25) n·cm^(-2)·s^(-1),which attenuates to 10^(10) n·cm^(-2)·s^(-1) at a distance of several 100 km,and this flux can effectively strike the target.It can be used as a defensive directed energy weapon with high energy density and has broad application prospects.
文摘In this study,a GC-MS/SIM method was used to analyze 16 PAHs in soil by ASE on-line clean-up.The average recoveries were ranged from 67% to 129%.The relative standard deviations were between 2.7% and 21.1%.The calculated limits of detection were no more than 0.95 ng/g.This method was fast,simple,and cost-saving,and can be used in the large quantities of samples analysis.
文摘36Cl, the long-lived radioactive nuclide, exists abroadly in atmosphere and lithosphere. Erosions and exposure ages of rocks can be determined by measuring 36Cl concentration in rocks. In recent years, accelerator mass spectrometry (AMS) is the only effective tool to measure 36Cl. In the present work, the method of 36Cl measurement with AMS was researched, and the erosion rate of limestone at Shihuadong region of Beijing City was calculated with the method, the result obtained is (1.33±0.28)×10-5 m·a-1.
文摘Labeled polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs)were extracted by three different methods,i.e.,soxhlet extraction,hot extraction and accelerated solvent extraction(ASE).The PCDD/Fs were detected by high resolution gas chromatography-high resolution mass spectrometry.Comparisons of the three methods were carried out by recovery of PCDD/Fs,solvent consumption and extraction time.The results showed that all of the method could extract labeled PCDD/Fs efficiently.ASE was a time saving procedure with lowest consumption of solvents compared with the other two methods.
文摘A rapid pretreatment method of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in soil and analysis by high resolution gas chromatograph-high resolution mass spectrometry was present.The extraction and alumina clean up of PCDD/Fs in soil was achieved by accelerated solvent extractor.Then the multi-layer silica-gel column was used for further clean up.The whole method has been evaluated on certified reference soil and farm soil.Accuracy and precision of this method was tested with satisfactory results.
文摘The measurement method for some radioisotope such as 99Tc, 182Hf, 151Sm is developing in China Institute of Atomic Energy (CIAE) accelerator mass spectrometry (AMS) system, and applications in the fields of nuclear physics, geosciences, life science and materials science is carried out. The brief introduction of these methods and applications are described in this paper.
文摘26Al is one of important radionuclide, which applies to geology, biomedicine, nuclear physics, nuclear astrophysics, and so on. The measurement methods of 26Al by accelerator mass spectrometry (AMS) were introduced, including chimical treatment-ion exchange method and extract AlO- for AMS measurement.
文摘西南艰险山区分布着大量的不同倾向的层状碎裂结构斜坡,地震作用下极易发生崩塌、滑坡等灾害,对在建的川藏铁路造成严重威胁。通过大型振动台模型试验,研究了强震条件下顺倾、反倾层状碎裂结构斜坡的动力响应、失稳破坏模式以及能量传递规律。试验结果表明:反倾斜坡的抗震性能显著优于顺倾斜坡;顺倾斜坡的破坏模式主要为拉裂-剪切-隆起-滑移型破坏,反倾斜坡的破坏模式主要为拉伸-弯曲-倾倒-崩塌型破坏;反倾斜坡的自振频率高于顺倾斜坡,顺倾斜坡的自振频率随震级的增加而逐渐降低,而反倾斜坡的自振频率在地震波幅值为0.4g~0.7g时出现反复震荡现象;顺倾斜坡存在明显的高程放大效应和趋表效应,反倾斜坡存在高程放大效应,其内部的加速度响应大于坡表。边际谱识别显示:顺倾斜坡的边际谱幅值(peak of marginal spectrum amplitude,简称PMSA)突变在坡腰上部最显著,说明该位置附近地震波的能量损失最大,反映出顺倾斜坡在坡腰上部附近形成了滑动破坏面;反倾斜坡的PMSA在坡肩处降低得最为显著,反映出坡肩部位损伤最为严重,易发生局部崩塌破坏。分析结果与试验现象能够较好地吻合,进一步揭示了不同结构类型层状碎裂结构斜坡在强震作用下的动力响应与失稳破坏模式,为川藏铁路的安全建设提供了依据。
文摘99Tc is a fission product, and it has high fission yield (6%) and very long half-life (2.1×105 a). With the movement of nucleus, the concentration of 99Tc is increasing in the circumstance. So it's important to measure the concentration of 99Tc in the circumstance, and accelerator mass spectrometry (AMS) might be the best method for 99Tc measurement. The 93Nb is used for AMS instrument normalization, sample matrix. And we used the difference of energy loss and deducting the isotope to measure the 99Tc in a series of standard samples. And the results show that the AMS is the feasible measurement method.
基金Projects(41330641,51279032,51278100)supported by(Major Program of)the National Natural Science Foundation of ChinaProject(41330641)supported by National Technology Support Program during the Twelfth Five-Year Plan of China+1 种基金Project(KYLX_0147)supported by Graduate Student Scientific Research Innovation Program of Jiangsu Province,ChinaProject(BK2012022)supported by the Natural Science Foundation of Jiangsu Province,China
文摘A series of unconfined compression tests(UCTs) were conducted to investigate the effects of content of reactive magnesia(Mg O) and carbonation time on the engineering properties including apparent characteristics, stress-strain relation, and deformation and strength characteristics of reactive Mg O treated silt soils. The soils treated with reactive Mg O at various contents were subjected to accelerated carbonation for different periods of time and later, UCTs were performed on them. The results demonstrate that the reactive Mg O content and carbonation time have remarkable influences on the aforementioned engineering properties of the soils. It is found that with the increase in reactive Mg O content, the unconfined compressive strength(qu) increases at a given carbonation time(<10 h), whereas the water content and amounts of crack of the soils decrease. A threshold content of reactive Mg O exists at approximately 25% and a critical carbonation time exists at about 10 h for the development of qu. A simple yet practical strength-prediction model, by taking into account two variables of reactive Mg O content and carbonation time, is proposed to estimate qu of carbonated reactive Mg O treated soils. A comparison of the predicated values of qu with the measured ones indicates that the proposed model has satisfactory accuracy.
基金Project(51674287)supported by the National Natural Science Foundation of China。
文摘Mountain tunnel crossing a normal fault in seismically active zone is easily affected by normal fault slip and earthquake. It is necessary to study tunnel dynamic response under action of normal fault slip and earthquake. In this paper, a three-dimensional normal fault sliding device was designed, and a shaking table test was carried out to study tunnel seismic performance under normal fault slip. The results show that peak acceleration of lining is dominated by an existence of fault and direction of seismic excitation, not normal fault slip. And the incremental strains of lining in critical zone with 1.7 times fault thickness and centered in faults induced by normal fault slip and seismic excitation are larger than ones only by seismic excitation. And the incremental strains in critical zone increase with the increase of normal fault slip magnitude ranging from 0 to 2 mm. And normal fault slip results in a significant reduction of overall tunnel stiffness subjected to an earthquake. These experimental results provide a scientific reference for prevention and control measurement of tunnel damage under earthquake and normal fault slip.
基金the financial support of the National Natural Funds in China(No.11772352)the Science project of Shaanxi Province(Nos.20190504 and 2019SZS-09)。
文摘With the purpose of investigating the effects of confining pressure and aging on the mechanical properties of Hydroxyl-terminated polybutadiene(HTPB)based composite solid propellant,tensile tests of thermal accelerated aged propellant samples under room temperature and different confining pressure conditions were performed through the use of a self-made confining pressure device and conventional testing machine.Afterwards,the maximum tensile stressσmand the corresponding strainεm for the propellant under different test conditions were obtained and analyzed.The results indicate that confining pressure and aging can significantly affect the mechanical properties of HTPB propellant,and the coupled effects are very complex.On the one hand,the stressσmincreases as a whole when confining pressure becomes higher or thermal aging time rises.Besides,this stress is more sensitive to aging with increasing confining pressure.There are almost three regions in the stress increments(σm P-σm0)/σm0and thermal aging time curves for HTPB propellant.The maximum value of the stress increment(σm P-σm0)/σm0for the propellant is about 98%at 7.0 MPa and 170 d.On the other hand,the strainεm decreases with increasing thermal aging time under the whole confining pressure conditions.However,the variation of this strain with confining pressure is more complex at various thermal aging time,which is different from that of unaged solid propellant in previous researches.In addition,this strain is slightly less sensitive to aging as the confining pressure increases.Furthermore,there is also a critical confining pressure in this investigation,whose value is between 0.15 MPa and 4.0 MPa.Beyond this critical pressure,the trends of the stressσmand the corresponding strainεm all change.Moreover,there are some critical thermal aging time for the stress increment(σm P-σm0)/σm0and strain increment(εm P-εm0)/εm0of HTPB propellant in this investigation,which are about at 35,50 and 170 d.Finally,based on the twin-shear strength theory,a new modified nonlinear strength criterion of thermal aged HTPB propellant under confining pressure was proposed.And the whole errors of fitted results are lower than 6%.Therefore,the proposed strength criterion can be selected as a failure criterion for the analysis the failure properties of aged HTPB propellant under different confining pressures,the structural integrity of solid propellant grain and the safety of solid rocket motor during ignition operation after long periods of storage.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.
基金supported by the National Defense Foundation of China(71601183)
文摘For the product degradation process with random effect (RE), measurement error (ME) and nonlinearity in step-stress accelerated degradation test (SSADT), the nonlinear Wiener based degradation model with RE and ME is built. An analytical approximation to the probability density function (PDF) of the product's lifetime is derived in a closed form. The process and data of SSADT are analyzed to obtain the relation model of the observed data under each accelerated stress. The likelihood function for the population-based observed data is constructed. The population-based model parameters and its random coefficient prior values are estimated. According to the newly observed data of the target product in SSADT, an analytical approximation to the PDF of its residual lifetime (RL) is derived in accordance with its individual degradation characteristics. The parameter updating method based on Bayesian inference is applied to obtain the posterior value of random coefficient of the RL model. A numerical example by simulation is analyzed to verify the accuracy and advantage of the proposed model.