The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent...The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent stability criterion is formulated as the feasibility problem of the linear matrix inequality (LMI). The criterion is proved theoretically to be less conservative than some existing results for linear time-delay systems. Because of the fact that the matrices in the LMI-based stability criteria usually have different dimensions, different structures, and different variables, the conservatism analysis of the criteria is difficult. This study brings about a new insight into the comparison of conservatism among different stability criteria, which are expressed in certain LMI forms. The existence of the guaranteed cost controller is given in terms of matrix inequalities. The condition can be solved by using an iterative procedure and does not need any parameter tuning. A numerical example is given to illustrate the effectiveness of the proposed method.展开更多
Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based ...Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.展开更多
基金the National Science Foundation for Distinguished Youth Scholars of China(60525304)the Natural Science Foundation of Zhejiang Province (Y107657).
文摘The problem of delay-dependent stability and guaranteed cost control (GCC) for a class of uncertain time-delay Lur'e systems are studied. By using an improved integral inequality,a less conservative delay-dependent stability criterion is formulated as the feasibility problem of the linear matrix inequality (LMI). The criterion is proved theoretically to be less conservative than some existing results for linear time-delay systems. Because of the fact that the matrices in the LMI-based stability criteria usually have different dimensions, different structures, and different variables, the conservatism analysis of the criteria is difficult. This study brings about a new insight into the comparison of conservatism among different stability criteria, which are expressed in certain LMI forms. The existence of the guaranteed cost controller is given in terms of matrix inequalities. The condition can be solved by using an iterative procedure and does not need any parameter tuning. A numerical example is given to illustrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6110118561302145)
文摘Digital image stabilization technique plays important roles in video surveillance and object acquisition.Many useful electronic image stabilization algorithms have been studied.A real-time algorithm is proposed based on field image gray projection which enables the regional odd and even field image to be projected into x and y directions and thus to get the regional gray projection curves in x and y directions,respectively.For the odd field image channel,motion parameters can be estimated via iterative minimum absolute difference based on two successive field image regional gray projection curves.Then motion compensations can be obtained after using the Kalman filter method.Finally,the odd field image is adjusted according to the compensations.In the mean time,motion compensation is applied to the even field image channel with the odd field image gray projection curves of the current frame.By minimizing absolute difference between odd and even field image gray projection curves of the current frame,the inter-field motion parameters can be estimated.Therefore,the even field image can be adjusted by combining the inter-field motion parameters and the odd field compensations.Finally,the stabilized image sequence can be obtained by synthesizing the adjusted odd and even field images.Experimental results show that the proposed algorithm can run in real-time and have a good stabilization performance.In addition,image blurring can be improved.