期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
视觉与AIS融合的桥区水域船舶自动监测方法
1
作者 杜子俊 贺益雄 +3 位作者 于德清 赵兴亚 张锐 黄立文 《中国航海》 北大核心 2025年第1期34-42,共9页
为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、... 为保障桥区通航安全,提出一种视觉与船舶自动识别系统(Automatic Identification System,AIS)融合的船舶自动监测方法。基于YOLOv5(You Only Look Once version 5)目标检测算法和Canny算法提取船舶图像轮廓信息,构建桥区水域目标距离、方位和高度视觉测量模型与方法,实现船舶三维定位。利用融合视觉与AIS的船舶航行态势数据建立异常行为检测模型,自动识别、监测桥区水域危险船舶。试验结果表明:在单、多船的情况下视觉与AIS数据关联准确率分别达到98.45%、91.29%;能有效监测桥区船舶的运动状态。本研究可为保障船舶和桥梁的安全提供有效方法。 展开更多
关键词 船舶自动监测方法 目标检测 数据融合 异常行为检测
在线阅读 下载PDF
基于Prophet-GMM的大坝监测数据异常检测算法 被引量:3
2
作者 孙政杰 丁勇 李登华 《人民黄河》 CAS 北大核心 2024年第3期132-135,142,共5页
大坝监测数据受环境等因素影响,往往存在异常数据,异常数据的检测对于大坝的正常运行起着不可或缺的作用,但是传统异常检测算法对于大坝监测数据往往达不到精度要求。提出了一种基于Prophet-GMM的异常检测算法,利用Prophet算法较好的拟... 大坝监测数据受环境等因素影响,往往存在异常数据,异常数据的检测对于大坝的正常运行起着不可或缺的作用,但是传统异常检测算法对于大坝监测数据往往达不到精度要求。提出了一种基于Prophet-GMM的异常检测算法,利用Prophet算法较好的拟合性能对大坝数据进行拟合,由拟合数据与实测数据求残差序列,再利用GMM算法对残差序列进行聚类,从而准确识别出异常值。结果表明:Prophet-GMM法对于不同类型的大坝监测数据都能准确识别出异常值,与传统检测算法相比,在查准率、查全率及准确率3个检测指标上,均有较为明显的提升。 展开更多
关键词 PROPHET GMM 大坝监测数据 异常检测
在线阅读 下载PDF
基于胶囊网络的异常多分类模型 被引量:3
3
作者 阳予晋 王堃 +2 位作者 陈志刚 徐悦 李斌 《计算机工程与科学》 CSCD 北大核心 2024年第3期427-439,共13页
国网公司日益庞大的服务器集群产生的大量生产运行数据,以及实时分析各类设备、系统产生的海量监控数据成为电力IT运维工作的新挑战。异常检测技术作为智能电网信息运维工作的关键技术,可以有效检测运维故障并及时告警,避免损坏敏感设... 国网公司日益庞大的服务器集群产生的大量生产运行数据,以及实时分析各类设备、系统产生的海量监控数据成为电力IT运维工作的新挑战。异常检测技术作为智能电网信息运维工作的关键技术,可以有效检测运维故障并及时告警,避免损坏敏感设备。目前一些传统异常检测方法检测的异常种类少且精度低,导致故障发现不及时。为了应对这一挑战,提出了基于胶囊网络的多维时间序列异常多分类模型NNCapsNet。首先,应用无监督算法结合专家知识对电网营销业务应用服务器性能监控数据进行预处理和标注。其次,引入胶囊网络进行分类和异常检测。五折交叉验证的实验结果表明,NNCapsNet在包含15类异常的数据集上实现了91.21%的平均分类准确度。还在包含2万条监控数据的数据集上与4个基准模型进行了对比,NNCapsNet在关键评估指标上均取得了较好的结果。 展开更多
关键词 监测数据 电力IT运维 异常检测 胶囊网络 多维时间序列分析 无监督算法
在线阅读 下载PDF
应用残差网络的微地震事件五分类检测方法
4
作者 潘禹行 田宵 +2 位作者 甘兆龙 张雄 张伟 《石油地球物理勘探》 EI CSCD 北大核心 2024年第3期392-403,共12页
常规的微地震事件检测方法通常需要人工选取阈值,在处理大量连续记录数据时效率较低,难以适应实时监测的需求。为此,提出一种基于残差网络的微地震事件五分类检测方法,将样本分为噪声、完整的微震事件、只含有P波、只含有S波以及多个微... 常规的微地震事件检测方法通常需要人工选取阈值,在处理大量连续记录数据时效率较低,难以适应实时监测的需求。为此,提出一种基于残差网络的微地震事件五分类检测方法,将样本分为噪声、完整的微震事件、只含有P波、只含有S波以及多个微震事件五类。该方法只需将连续记录的波形数据等分,并通过时窗调整获得完整的微震记录。通过一系列数据增广方法实现小规模实际数据样本集的模型训练,模型精度高达99%。将该方法与二分类方法同时应用于微地震监测数据检测,并通过P波、S波到时拾取和震源定位评估检测效果。研究结果表明,基于残差网络的五分类检测方法检测到了更多数量的微震事件,且具有较高的运算效率,满足实时监测的需求。 展开更多
关键词 微地震监测 事件检测 数据增广 残差网络 深度学习
在线阅读 下载PDF
基于多传感器信息融合的城市边坡监测数据异常事件检测 被引量:10
5
作者 刘刚 叶立新 +2 位作者 陈麒玉 陈根深 范文遥 《地质科技通报》 CAS CSCD 北大核心 2022年第2期13-25,共13页
为预防和管控城市突发地质灾害造成的人民生命和财产损失,国家针对城市地质灾害易发地区部署了大量的各类传感器,用来感知和监测城市边坡等地质体的变化情况,以支持对地质灾害的预警。从边坡监测数据特点和时序数据分析技术出发,针对监... 为预防和管控城市突发地质灾害造成的人民生命和财产损失,国家针对城市地质灾害易发地区部署了大量的各类传感器,用来感知和监测城市边坡等地质体的变化情况,以支持对地质灾害的预警。从边坡监测数据特点和时序数据分析技术出发,针对监测数据噪声混杂、模式分析困难、预警阈值的不确定性等问题,给出了一种基于多传感器信息融合的边坡监测数据异常事件检测方法。主要工作包括:①边坡监测数据变化模式可以归结为周期项、趋势项以及噪声项的叠加,实践中在预处理基础上对边坡监测数据进行周期为24 h的重采样,同时趋势项可以近似看作是经典的牛顿运动,以此构建形变运动模型,为卡尔曼滤波的状态转移提供理论支持;②采用集中式衰减记忆卡尔曼滤波,引入衰减记忆因子,对多传感器边坡监测数据进行特征级融合,降低了噪声的影响,提高了边坡监测数据的可靠性;③引入惩罚系数,应用改进的动态时间弯曲算法对于周期序列数据进行相似性度量。在此基础上基于K-means聚类和局部异常因子分析对边坡监测数据进行异常检测,并基于3σ准则确定预警阈值。该方法能将正常模式和异常模式的时序数据进行区分,有效检测出边坡监测数据的异常,为灾害预防提供支持。最后以深圳市典型边坡监测数据为例验证了此方法的可行性。 展开更多
关键词 时序数据 多传感器信息融合 卡尔曼滤波 动态时间弯曲 边坡监测数据异常事件检测
在线阅读 下载PDF
基于DBSCAN的环境传感器网络异常数据检测方法 被引量:23
6
作者 潘渊洋 李光辉 徐勇军 《计算机应用与软件》 CSCD 北大核心 2012年第11期69-72,111,共5页
随着传感器网络环境监控应用的发展,传感器网络测量数据的异常检测近年来受到学术界和工业界的高度关注。提出一种基于DBSCAN(Density-Based Spatial Clustering of Application with Noise)的异常数据检测方法,该方法利用距离定义数据... 随着传感器网络环境监控应用的发展,传感器网络测量数据的异常检测近年来受到学术界和工业界的高度关注。提出一种基于DBSCAN(Density-Based Spatial Clustering of Application with Noise)的异常数据检测方法,该方法利用距离定义数据的相似度进行划分聚类,使用DBSCAN算法提取环境特征集,并根据特征集对异常数据进行检测。最后,基于真实的传感器网络完成了多组实验,实验结果表明该方法能够实时准确地检测出异常数据。 展开更多
关键词 传感器网络 环境监测 异常数据检测 聚类
在线阅读 下载PDF
M-TAEDA:多变量水质参数时序数据异常事件检测算法 被引量:9
7
作者 毛莺池 齐海 +1 位作者 接青 王龙宝 《计算机应用》 CSCD 北大核心 2017年第1期138-144,共7页
在供水管网中部署传感器网络实时获取多个水质参数时间序列数据,当供水管网发生污染时,高效准确地检测水质异常是一个重要问题。提出多变量水质参数时间异常事件检测算法(M-TAEDA),利用BP模型分析多变量水质参数的时序数据,确定可能离群... 在供水管网中部署传感器网络实时获取多个水质参数时间序列数据,当供水管网发生污染时,高效准确地检测水质异常是一个重要问题。提出多变量水质参数时间异常事件检测算法(M-TAEDA),利用BP模型分析多变量水质参数的时序数据,确定可能离群点;结合贝叶斯序贯分析独立更新每个参数的事件概率,预测单个传感器节点检测的异常概率;将单变量的事件概率融合为统一多变量事件概率,融合判断异常事件。实验结果表明:BP模型模拟多变量水质参数进行预测可以达到90%精确度;与单变量参数时间异常事件检测算法(S-TAEDA)相比,M-TAEDA可以提高异常检出率约40%,降低误报率约45%。 展开更多
关键词 无线传感器网络 异常事件检测 BP模型 多变量水质参数 时间序列数据
在线阅读 下载PDF
基于电能质量监测数据的企业环保异常工况识别 被引量:8
8
作者 张逸 姚文旭 +1 位作者 邵振国 张良羽 《电力系统自动化》 EI CSCD 北大核心 2023年第5期180-189,共10页
针对目前污染企业环保工况异常监测实施困难、识别误差大、结果易被篡改等问题,提出了一种基于电能质量监测数据的环保异常工况识别方法。区别于对每个设备安装分表进行用电监测的现有方案,使用企业设备公共用电入口处非侵入式负荷监测... 针对目前污染企业环保工况异常监测实施困难、识别误差大、结果易被篡改等问题,提出了一种基于电能质量监测数据的环保异常工况识别方法。区别于对每个设备安装分表进行用电监测的现有方案,使用企业设备公共用电入口处非侵入式负荷监测所得的多维电能质量数据进行工况分类模型训练,实现异常工况识别。首先,对表征生产情况的特征数据进行时序变点检测与聚类计算,实现企业生产工况的划分;然后,结合环保设备运行情况得到用于分类的环保工况类别;进而,采用Stacking集成学习模型对环保相关的工况场景进行分类学习;最后,利用所训练的分类模型识别出企业存在的环保异常工况。利用仿真测试数据与实际企业数据验证了所提方法的有效性。 展开更多
关键词 环保工况 电能质量 监测数据 非侵入式负荷监测 异常工况识别 环保监测 突变点检测 工况分类 Stacking模型
在线阅读 下载PDF
云计算环境下船舶监控网络异常数据检测方法 被引量:3
9
作者 农嘉 王代远 +1 位作者 潘梅勇 覃志松 《舰船科学技术》 北大核心 2021年第8期190-192,共3页
在船舶监控网络高度应用的今天,监控网络异常数据检测受到了学术界以及船舶制造业的高度关注。就目前的船舶监控网络异常数据检测方法而言,其计算能力较低,导致异常数据误报率较高。针对此问题,设计云计算环境下船舶监控网络异常数据检... 在船舶监控网络高度应用的今天,监控网络异常数据检测受到了学术界以及船舶制造业的高度关注。就目前的船舶监控网络异常数据检测方法而言,其计算能力较低,导致异常数据误报率较高。针对此问题,设计云计算环境下船舶监控网络异常数据检测方法。使用相似度函数对监控节点数据展开相似性检测,初步确定数据异常节点位置。根据节点位置,对监控网络数据进行时间序列检测,确定异常数据输出时间。对上述两部分进行融合处理,完成异常数据检测方法的设计过程。经对比实验验证可知,此方法在应用中具有误报率低,计算效率较高的优点,可将其应用到后续的船舶监控网络数据处理过程中。 展开更多
关键词 异常数据检测 监控网络 云计算 相似度计算
在线阅读 下载PDF
DBSCAN和GRU算法在桥梁监测系统的研究 被引量:4
10
作者 刘欢 李富年 +3 位作者 颜永逸 宋晓东 杨国静 林俊平 《现代电子技术》 2022年第20期114-118,共5页
桥梁监测系统通过实时监测桥梁的各项指标来保证桥梁的安全运行,但监测数据在传输的过程中,不可避免地会产生噪声,从而对后续的数据预测产生较大干扰。通常利用聚类找出离散点来去除噪声,传统的K-means算法聚类前需要指定聚类簇数,以空... 桥梁监测系统通过实时监测桥梁的各项指标来保证桥梁的安全运行,但监测数据在传输的过程中,不可避免地会产生噪声,从而对后续的数据预测产生较大干扰。通常利用聚类找出离散点来去除噪声,传统的K-means算法聚类前需要指定聚类簇数,以空间中K个点为中心进行聚类,对最靠近的对象归类,但海量的桥梁数据易受环境因素影响,因而无法预先指定数据簇。DBSCAN无需事先知道要形成的簇类的数量,可以自动确定簇个数。另外,桥梁数据是以时间戳存储的时序数据,在时序数据预测算法中,LSTM和GRU算法能够解决RNN算法的梯度爆炸问题,而GRU比LSTM参数量少,可以减少过拟合风险。基于此,文中以郑万高铁巫山大宁河双线大桥为研究对象,提出一种DBSCAN和GRU神经网络相结合的数据预测算法,以DBSCAN剔除噪声数据,并利用GRU神经网络对桥梁的压力进行深度学习,预测下一时刻的数据,然后进行异常检测。实践结果表明:所提算法可以准确地预测桥梁下一时刻的压力值,与LSTM算法相比,该算法的决定系数提高5.2%,均方根误差和平均绝对误差分别降低8.3%和11.6%;同时系统还能及时发送预警短信,为桥梁的安全提供保障。 展开更多
关键词 桥梁监测 时序数据 噪声数据 K-MEANS DBSCAN RNN LSTM GRU 异常检测
在线阅读 下载PDF
基于影响因子分解法的大坝监测数据异常检测算法 被引量:9
11
作者 李松轩 丁勇 李登华 《人民长江》 北大核心 2023年第4期234-240,共7页
如何快速检测出大坝安全监测系统内的异常数据(例如粗差和告警值)对于大坝安全运行具有极其重要的意义,但传统方法容易漏检较小数值异常而对后续建模产生不利影响。提出了一种基于影响因子分解的异常值检测方法,通过快速小波变换及离散... 如何快速检测出大坝安全监测系统内的异常数据(例如粗差和告警值)对于大坝安全运行具有极其重要的意义,但传统方法容易漏检较小数值异常而对后续建模产生不利影响。提出了一种基于影响因子分解的异常值检测方法,通过快速小波变换及离散傅里叶变换提取监测序列中的显著趋势与周期,剥离环境因子的影响,构建余项序列,并结合小概率事件思想准确判定余项序列中保留的异常值,从而精确检测出监测序列中较小数值异常。实例验证结果表明:此方法具有较好的实用性与稳定性,各类监测序列中异常检测准确率均达98%以上,查准率与查全率均值分别为93%与92%,与传统检测方法相比,检测精确程度及泛化能力明显提升。 展开更多
关键词 大坝安全监测 异常数据模拟 异常数据检测 影响因子分解法
在线阅读 下载PDF
基于SSA-DBSCAN的边坡安全监测数据粗差探测方法 被引量:12
12
作者 蒋齐嘉 蒋中明 +1 位作者 唐栋 曾景明 《长江科学院院报》 CSCD 北大核心 2022年第4期85-90,98,共7页
考虑到边坡安全监测数据中存在粗差这一问题,提出了一种基于奇异谱分析(SSA)和密度聚类算法(DBSCAN)的粗差探测法,该方法结合SSA在提取信号和DBSCAN算法在区分粗差和异常值上的优势:首先使用SSA对监测序列进行分解重构,准确提取主信号... 考虑到边坡安全监测数据中存在粗差这一问题,提出了一种基于奇异谱分析(SSA)和密度聚类算法(DBSCAN)的粗差探测法,该方法结合SSA在提取信号和DBSCAN算法在区分粗差和异常值上的优势:首先使用SSA对监测序列进行分解重构,准确提取主信号并获取残余分量;然后使用DBSCAN聚类算法对残余分量进行分析;最后联合2种方法确定粗差点并剔除。通过引入多因素影响的边坡监测序列实例进行验证,并且将SSA-DBSCAN粗差探测法与中位数绝对偏差法(MAD)和格拉布斯准则法(Grubbs)进行比较分析。结果表明,本文提出的SSA-DBSCAN粗差探测法与上述方法相比性能优异、误判率低,可为后续监测数据分析处理乃至于预测预警奠定基础。 展开更多
关键词 边坡工程 奇异谱分析 时间序列 安全监测数据 粗差探测 DBSCAN
在线阅读 下载PDF
改进Kmeans算法的海洋数据异常检测 被引量:30
13
作者 蒋华 季丰 +2 位作者 王慧娇 王鑫 罗一迪 《计算机工程与设计》 北大核心 2018年第10期3132-3136,共5页
为解决Kmeans算法随机指定初始点聚类和海洋Argo浮标数据异常问题,提出一种改进Kmeans算法的海洋数据异常检测方法。提出一种改进Kmeans算法DMKmeans(density mathematics Kmeans),选取给定邻域范围内最近邻数据点最多的点为初始中心点... 为解决Kmeans算法随机指定初始点聚类和海洋Argo浮标数据异常问题,提出一种改进Kmeans算法的海洋数据异常检测方法。提出一种改进Kmeans算法DMKmeans(density mathematics Kmeans),选取给定邻域范围内最近邻数据点最多的点为初始中心点,迭代聚类,直到准则函数收敛,聚类结束;基于DMKmeans算法对数据集聚类,使用数学模型为准则进行海洋监测数据异常检测。通过海洋监测数据异常检测仿真实验,将DMKmeans算法与传统Kmeans算法及MinMaxKmeans算法做对比分析,其结果表明,提出算法能有效提高聚类准确率和异常检测率。 展开更多
关键词 Kmeans算法 初始聚类中心点 离群点 海洋监测数据 异常检测
在线阅读 下载PDF
基于数据重构与孤立森林法的大坝自动化监测数据异常检测方法 被引量:16
14
作者 赵新华 范振东 +1 位作者 何宇 查益华 《中国农村水利水电》 北大核心 2021年第9期174-178,共5页
大坝安全自动化采集的监测数据不可避免地存在粗差、缺测等问题,针对异常数据量值、数量以及分布规律的不确定性,人工删除异常值存在工作量大、主观性强等不足,提出一种基于数据重构与孤立森林法的异常数据检测方法,该方法是一种无监督... 大坝安全自动化采集的监测数据不可避免地存在粗差、缺测等问题,针对异常数据量值、数量以及分布规律的不确定性,人工删除异常值存在工作量大、主观性强等不足,提出一种基于数据重构与孤立森林法的异常数据检测方法,该方法是一种无监督的学习方法,不需要根据特征标签进行样本学习,适用范围较广。首先对大坝自动化监测数据进行分解与重构,分离出趋势项,而后用孤立森林算法对剩余项进行判别,计算测点的异常分数,并剔除明显的异常数据,最后再根据拉依达准则进一步清理异常数据。通过实例验证,该方法能较好检测出大坝安全自动化异常监测数据,满足工程实际应用。 展开更多
关键词 大坝自动化监测数据 异常检测 孤立森林 数据分解与重构 拉依达准则
在线阅读 下载PDF
大型LNG接收站数据监测平台与数据异常检测 被引量:5
15
作者 赵红岩 《控制工程》 CSCD 北大核心 2022年第9期1667-1671,共5页
针对天然气使用与进口量日益增长,储罐建造数量不断增加的问题,研究了大型LNG接收站的安全监测技术,分析讨论了LNG接收站的数据监测动态流程。从大型LNG接收站的系统组成、工艺处理以及对安全运行的影响参数方面探究LNG接收站数据安全... 针对天然气使用与进口量日益增长,储罐建造数量不断增加的问题,研究了大型LNG接收站的安全监测技术,分析讨论了LNG接收站的数据监测动态流程。从大型LNG接收站的系统组成、工艺处理以及对安全运行的影响参数方面探究LNG接收站数据安全监测平台的搭建,并实现数据的接入、数据处理、数据储存和传输的功能。通过数据接口将采集到的监测数据读取至监测平台,再通过转化回归分析、时序监测、关联监测和智能算法等步骤实现数据的异常检测处理。该技术框架可以为LNG接收站安全生产工艺产生的异常数据快速检测提供参考。 展开更多
关键词 LNG 工业互联网 数据监测 异常检测
在线阅读 下载PDF
轴系测试数据分布特征信息获取方法与应用
16
作者 孙锋 刘杰 +2 位作者 周建辉 杨梓辉 毛伟兰 《中国舰船研究》 CSCD 北大核心 2019年第S01期183-188,共6页
[目的]船舶轴系监测系统具有监控对象多、测试数据量大和存储空间需求大等特点,如果存储方案不合理,数据未预先统计和分类存储,会导致数据不便于检索、计算和分析。为此,提出针对测试数据的批量统计特征数据及分表存储的方法。[方法]在... [目的]船舶轴系监测系统具有监控对象多、测试数据量大和存储空间需求大等特点,如果存储方案不合理,数据未预先统计和分类存储,会导致数据不便于检索、计算和分析。为此,提出针对测试数据的批量统计特征数据及分表存储的方法。[方法]在现有数据库的基础上,设计时间序列特征数据表和汇总表,以及统计测试数据的均值、极值、标准差、偏度等的流程;采用仿真对比,选择均值和偏度作为特征向量;通过DBSCAN聚类设计传感器数据异常识别算法,验证对传感器系统异常数据的识别效果。[结果]结果表明,所提方法对异常数据的识别效果较好,[结论]可适用于实际测试系统的特征数据提取。 展开更多
关键词 船舶轴系监测 特征数据 数据提取 异常数据检测 DBSCAN 聚类算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部