期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Real-Time Smart Meter Abnormality Detection Framework via End-to-End Self-Supervised Time-Series Contrastive Learning with Anomaly Synthesis
1
作者 WANG Yixin LIANG Gaoqi +1 位作者 BI Jichao ZHAO Junhua 《南方电网技术》 北大核心 2025年第7期62-71,89,共11页
The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced met... The rapid integration of Internet of Things(IoT)technologies is reshaping the global energy landscape by deploying smart meters that enable high-resolution consumption monitoring,two-way communication,and advanced metering infrastructure services.However,this digital transformation also exposes power system to evolving threats,ranging from cyber intrusions and electricity theft to device malfunctions,and the unpredictable nature of these anomalies,coupled with the scarcity of labeled fault data,makes realtime detection exceptionally challenging.To address these difficulties,a real-time decision support framework is presented for smart meter anomality detection that leverages rolling time windows and two self-supervised contrastive learning modules.The first module synthesizes diverse negative samples to overcome the lack of labeled anomalies,while the second captures intrinsic temporal patterns for enhanced contextual discrimination.The end-to-end framework continuously updates its model with rolling updated meter data to deliver timely identification of emerging abnormal behaviors in evolving grids.Extensive evaluations on eight publicly available smart meter datasets over seven diverse abnormal patterns testing demonstrate the effectiveness of the proposed full framework,achieving average recall and F1 score of more than 0.85. 展开更多
关键词 abnormality detection cyber-physical security anomaly synthesis contrastive learning time-series
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部