The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear...The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.展开更多
This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of...This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.展开更多
这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用...这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。展开更多
The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed ...The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.展开更多
The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the...The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.展开更多
The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a no...The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.展开更多
The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapuno...The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.展开更多
This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a...This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.展开更多
This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-fo...This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.展开更多
基金This project was supported by the National Natural Science Foundation of China(69974017 60274020 60128303)
文摘The back-stepping designs based on confine functions are suggested for the robust output-feedback global stabilization of a class of nonlinear continuous systems; the proposed stabilizer is efficient for the nonlinear continuous systems confined by a bound function, the nonlinearities of the systems may be of varied forms or uncertain; the designed stabilizer is robust means that a class of nonlinear continuous systems can be stabilized by the same output feedback stabilization schemes; numerical simulation examples are given.
基金This work was supported by the National Natural Science Foundation of China(62003131,62073121,62173125)the Natural Science Foundation of Jiangsu Province(BK20200520).
文摘This paper studies the fixed-time output-feedback control for a class of linear systems subject to matched uncertainties.To estimate the uncertainties and system states,we design a composite observer which consists of a high-order sliding mode observer and a Luenberger observer.Then,a robust output-feedback controller with fixed-time convergence guarantee is constructed.Rigorous theoretical proof shows that with the proposed controller,the system states can converge to zero in fixed-time free of the initial conditions.Finally,simulation comparison with existing algorithms is given.Simulation results verify the effectiveness of the proposed controller in terms of its fixed-time convergence and perfect disturbance rejection.
基金Supported by National Natural Science Foundation of China(60374002,60674036)the Science and Technical Development Plan of Shandong Province (2004GG4204014)the Program for New Century Excellent Talents in University of China
基金Supported by National 'Natural Science Foundation of China (60374027), Program for New Century Excellent Talents in University (2004)
文摘这份报纸与致动器浸透为分离时间的系统处理 H 产量反馈控制问题。开始,一条抑制 H 输出反馈控制途径在线性矩阵不平等(LMI ) 的框架被介绍优化。在骚乱精力界限上的某些假设下面,靠近环的 H 性能被完成。而且,动人的地平线策略被用于控制性能的一个联机管理以便靠近环的系统能在意外大骚乱的情况中满足控制限制。驱散限制被导出完成动人的地平线靠近环的系统消散。模拟结果证明抑制 H 控制器在骚乱假设下面有效地工作并且动人的地平线 H 控制器罐头交易自动地在令人满意的控制限制和提高的性能之间。
基金National Natural Science Foundation of China (60674036, 60974003), the Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金supported by the National Natural Science Foundation of China(61374035)the Fundamental Research Funds for the Central Universities(20720150177)
文摘The global robust output regulation problem of the singular nonlinear system is investigated. Motivated by the input-output linearization of the normal affine nonlinear system, a global diffeomorphism map is designed under the assumption that the singular nonlinear system has a strong relative degree. The global diffeomorphism map transfers the singular nonlinear system into a new singular nonlinear system with a special structure. Attaching an internal model to the new singular nonlinear system yields an augmented singular nonlinear system and the global robust stabilization solution of the augmented system implies the global robust output regulation solution of the original singular nonlinear system. Then the global stabilization problem is solved by some appropriate assumptions and the solvability conditions of the global robust output regulation problem are established. Finally, a simulation example is given to illustrate the design approach.
基金Supported by National Natural Science Foundations of China (61325016, 61273084, 61233014), Natural Science Foundation for Distinguished Young Scholar of Shandong Province of China (JQ200919), and the Independent Innovation Foundation of Shan- dong University (2012JC014)
基金Supported by National Natural Science Foundation of China (60674036), the Science and Technical Development Plan of Shandong Province (2004GG4204014), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), and the Excellent Young and Middle-aged Scientist Award of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundation of China(60774010 10971256) Natural Science Foundation of Jiangsu Province(BK2009083)+1 种基金 Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(07KJB510114) Shandong Provincial Natural Science Foundation of China(ZR2009GM008 ZR2009AL014)
基金Projects(50775200,50905156)supported by the National Natural Science Foundation of China
文摘The system considered in this work consists of a cylinder which is controlled by a pair of three-way servo valves rather than a four-way one.Therefore,the cylinder output stiffness is independently controllable of the output force.A discontinuous projection based adaptive robust controller (ARC) was constructed to achieve high-accuracy output force trajectory tracking for the system.In ARC,on-line parameter adaptation method was adopted to reduce the extent of parametric uncertainties due to the variation of friction parameters,and sliding mode control method was utilized to attenuate the effects of parameter estimation errors,unmodelled dynamics and disturbance.Furthermore,output stiffness maximization/minimization was introduced to fulfill the requirement of many robotic applications.Extensive experimental results were presented to illustrate the effectiveness and the achievable performance of the proposed scheme.For tracking a 0.5 Hz sinusoidal trajectory,maximum tracking error is 4.1 N and average tracking error is 2.2 N.Meanwhile,the output stiffness can be made and maintained near its maximum/minimum.
基金supported by the National Natural Science Foundation of China (60574011)College Research Project of Liaoning Province(L2010522)
文摘The problem of the quantized dynamic output feedback controller design for networked control systems is mainly discussed. By using the quantized information of the system measurement output and the control input, a novel networked control system model is described. This model includes many networkinduced features, such as multi-rate sampled-data, quantized signal, time-varying delay and packet dropout. By constructing suitable Lyapunov-Krasovskii functional, a less conservative stabilization criterion is established in terms of linear matrix inequalities. The quantized control strategy involves the updating values of the quantizer parameters μi(i = 1, 2)(μi take on countable sets of values which dependent on the information of the system measurement outputs and the control inputs). Furthermore, a numerical example is given to illustrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China (60674036), the Science and Technique Development Plan of Shandong Province of China (2004GG4204014), the Program for New Century Excellent Talents in University of China (NCET-07-0513), the Key Science and Technique Foundation of Ministry of Education of China (108079), and the Excellent Young and Middle-Aged Scientist Award Grant of Shandong Province of China (2007BS01010)
基金Supported by National Natural Science Foundation of China (60674021), Program for New Century Excellent Talents in University (NCET-04-0283), the Funds for Creative Research Groups of China (60521003), Program for Changjiang Scholars and Innovative Research Team in University (IRT0421), the State Key Program of National Natural Science of China (60534010) and the Funds of Ph. D. Program of Ministry of Education, China (20060145019)
文摘使量子化的动态产量反馈 H 控制为的问题分离时间线性时间不变(LTI ) 系统在这份报纸被调查。考虑的 quantizer 动态、镇静一可调节激增参数和静态的 quantizer。静态的 quantizer 范围具有实际意义并且充分被考虑。首先,考虑量子化错误,使量子化的控制策略控制器状态依赖于不仅而且在系统测量产量上,它被建议以便使量子化的靠近环的系统是 asymptotically 稳定的,与规定 H,性能跳。根据这结果,然后,一个反复的基于 LMI 的优化算法被开发优化静态的 quantizer 范围为靠近环的系统满足 H 表演要求。一个例子被举说明建议方法的有效性。
基金supported by the National Natural Science Foundation of China (60574011)
文摘The static output feedback H∞ control is explored for a class of nonlinear singular system with norm-bounded uncertainty. On certain suppose, the zero solution asymptotically stability is analyzed by means of Lyapunov function and Lyapunov stability theory. Based on which, a sufficient condition is presented such that the system is zero solution asymptotically stable and has H∞ norm constraint γ. Then, the static output feedback H∞ controller is designed to guarantee the resulting closed-loop system has the same performance. Finally, an example proves the effectiveness of the conclusion.
基金Supported by Program for New Century Excellent Talents in University of China (NCET-05-0607), National Natural Science Foundation of China (60774010), Program for Summit of Six Types of Talents of Jiangsu Province (07-A-020), Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province (07KJB510114)
文摘This paper is concerned with a fuzzy robust H∞ control problem via output feedbackfor a class of uncertain nonlinear systems. The uncertain nonlinear systemsare represented by fuzzy Takagi-Sugeno (T-S) model, and a fuzzy controller is designedbased on the state observer. A sufficient condition for the existence of fuzzycontroller is given in terms of the linear matrix inequalities (LMIs) and the adaptivelaw. Based on Lyapunov stability theorem, the proposed fuzzy control scheme suchthat the desired H∞performance is achieved in the sense that all the closed-loopsignals are uniformly ultimately bounded (UUB). Simulation results indicate theeffectiveness of the developed control scheme. In this paper, a less conservativefuzzy tracking controller is proposed, where the matching condition and the upperbound are avoided. Comparing with the existing works, the dimension of the LMIsof this paper is reduced.
基金supported by the National Natural Science Foundation of China(61304026)
文摘This paper is concerned with the control design and the theoretical analysis for a class of input time-delay systems with stable, critical stable or unstable poles. In order to overcome the time delay, a novel feed-forward compensation active disturbance rejection control(FFC-ADRC) approach is proposed. It combines advantages of the Smith predictor and the traditional active disturbance rejection control(ADRC). The tracking differentiator(TD) is designed to predict the control signal, which adds an anticipatory control to the control signal and allows a higher observer bandwidth to obtain better disturbance rejection. The modified extended state observer(ESO) is designed to estimate both system states and the total disturbances(internal disturbance, uncertainties and delayed disturbance). Then the Lyapunov theory and the theory of the input-output stability are applied to prove the asymptotic stability of the closed-loop control system. Finally, numerical simulations show the effectiveness and practicality of the proposed design.