期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度渐近金字塔的太阳电池缺陷检测网络
1
作者 朱磊 耿萃萃 +3 位作者 李博涛 潘杨 张博 姚丽娜 《太阳能学报》 北大核心 2025年第5期267-274,共8页
以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关... 以YOLOv8网络为基础提出一种多尺度渐近金字塔网络MSANet。首先使用带有分层特征融合结构的特征提取块M-Block替换常规卷积层,以增强网络对多尺度目标的特征提取能力;其次引入空间注意力机制(SRU),抑制背景区域的特征冗余,使网络能更关注重点区域的同时减少参数量的引入;最后提出一种改进渐近金字塔网络AFPNa结构,缓解网络在特征融合过程中信息的丢失或退化问题,提升缺陷检测精度。实验结果表明,与YOLOv8原模型及RTMDET等7种先进检测网络相比,MSANet具有更高的检测精度,相较原模型均值平均精度提升5.7个百分点。 展开更多
关键词 缺陷检测 深度学习 太阳电池 分层特征融合结构 多尺度渐近金字塔 空间注意力机制
在线阅读 下载PDF
一种新的Bayes网络条件概率学习方法 被引量:1
2
作者 汪荣贵 高隽 +1 位作者 张佑生 彭青松 《中国科学技术大学学报》 CAS CSCD 北大核心 2005年第5期701-710,共10页
针对大规模Bayes网络的条件概率赋值问题,提出一种学习方法.首先使用类层次结构定义一种新的基于层次的Bayes网络模型,用于表示大规模Bayes网络.然后将训练数据集由单个数据表的形式转化成多表数据库,其中每个数据库表对应一个Bayes网... 针对大规模Bayes网络的条件概率赋值问题,提出一种学习方法.首先使用类层次结构定义一种新的基于层次的Bayes网络模型,用于表示大规模Bayes网络.然后将训练数据集由单个数据表的形式转化成多表数据库,其中每个数据库表对应一个Bayes网络模块.在此基础上导出条件概率计算公式,从每个数据库表中算出相应的Bayes网络模块的条件概率表,由此实现对整个层次Bayes网络的概率赋值.通过适当增加数据库表的数目来控制每个表中属性的个数,保证计算的可行性.将层次Bayes网络及计算公式用于解决图像中文本的自动检测与定位问题,实验结果表明了它们的有效性. 展开更多
关键词 BaYES网络 类层次结构 层次Bayes网络 机器学习 文本检测
在线阅读 下载PDF
基于层次结构嵌入的动态社区检测
3
作者 朱瑞 叶亚琴 +2 位作者 李圣文 汤子健 肖玥 《计算机科学》 北大核心 2025年第8期127-135,共9页
作为理解复杂网络内在模式和组织结构的有力工具,动态社区检测揭示了网络中相互密集连接的节点集合的演化过程,是社会科学、城市规划等领域的一项基本任务。近年来,动态社区检测领域涌现了大量基于表征学习的方法。这些方法通过融合网... 作为理解复杂网络内在模式和组织结构的有力工具,动态社区检测揭示了网络中相互密集连接的节点集合的演化过程,是社会科学、城市规划等领域的一项基本任务。近年来,动态社区检测领域涌现了大量基于表征学习的方法。这些方法通过融合网络拓扑结构和演化特征,将节点映射到低维连续向量空间中,实现了对节点相似度和差异性的准确度量。然而,现有表征学习方法未能充分考虑节点的长距离信息,导致节点表征未能全面捕捉网络的全局特征。对此,提出了一种基于层次结构嵌入的动态社区检测算法DHM。具体而言,DHM基于网络的多粒度特性生成层次结构,并通过设计自底向上和自顶向下的消息传递机制,将不同层次的节点组织关系嵌入至节点表征。在人工网络数据集和真实网络数据集上进行的实验结果显示,DHM在标准互信息、调整兰德指数和模块度3个指标上优于现有的动态社区检测算法,可以较好地完成时序网络下的社区检测任务。 展开更多
关键词 动态社区检测 时序网络 模块度优化 层次结构 表征学习
在线阅读 下载PDF
基于包络学习和分级结构一致性机制的不平衡集成算法 被引量:2
4
作者 李帆 张小恒 +1 位作者 李勇明 王品 《电子学报》 EI CAS CSCD 北大核心 2024年第3期751-761,共11页
集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance ... 集成方法是不平衡学习方法的重要分支,然而,现有不平衡集成方法均作用于原样本而没考虑样本的结构信息,因此其效能仍然有限.样本的结构信息包括局部和全局结构信息.为了解决上述问题,本文提出了一种基于深度样本包络网络(Deep Instance Envelope Network,DIEN)和分级结构一致性机制(Hierarchical Structure Consistency Mechanism,HSCM)的不平衡集成学习算法.该算法在考虑局部流形和全局结构信息的情况下,通过多层样本聚类,生成高质量的多层包络样本,从而实现类平衡化.首先,算法基于样本近邻拼接和模糊C均值聚类算法,设计DIEN来挖掘样本的结构信息,得到深度包络样本.然后,设计局部流形结构度量和全局结构分布度量来构建HSCM用于增强层间样本的分布一致性.接着,将DIEN和HSCM结合起来,构建出优化后的深度样本包络网络——DH(DIEN with HSCM).之后,将基分类器应用于包络样本.最后,设计bagging集成学习机制来融合基分类器的预测结果.文末组织了多组实验,采用了十多个公共数据集和有代表性的相关算法进行验证比较.实验结果表明,本文算法在AUC(Area Under Curve),F-measure等四个性能指标上显著最优. 展开更多
关键词 不平衡学习 包络学习 分级结构一致性机制 局部流形结构度量 全局结构分布度量
在线阅读 下载PDF
融合对比学习和BERT的层级多标签文本分类模型 被引量:3
5
作者 代林林 张超群 +2 位作者 汤卫东 刘成星 张龙昊 《计算机工程与设计》 北大核心 2024年第10期3111-3119,共9页
为有效解决现有文本分类模型难以建模标签语义关系的问题,提出一种融合对比学习和自注意力机制的层级多标签文本分类模型,命名为SampleHCT。设计一个标签特征提取模块,能有效提取标签的语义和层次结构特征。采用自注意力机制构建具有混... 为有效解决现有文本分类模型难以建模标签语义关系的问题,提出一种融合对比学习和自注意力机制的层级多标签文本分类模型,命名为SampleHCT。设计一个标签特征提取模块,能有效提取标签的语义和层次结构特征。采用自注意力机制构建具有混合标签信息的阳性样本。使用对比学习训练文本编码器的标签意识。实验结果表明,SampleHCT相较于19个基准模型,取得了更高的分类分数,验证了其具有更有效的标签信息建模方式。 展开更多
关键词 文本分类 对比学习 自注意力机制 层级结构 多标签 标签信息 全局特征
在线阅读 下载PDF
基于GCN和HGP-SL的电力系统暂态稳定评估 被引量:1
6
作者 周宇 肖健梅 王锡淮 《电气工程学报》 CSCD 北大核心 2024年第4期246-254,共9页
当前基于人工智能的电力系统暂态稳定评估研究多以欧式结构数据为输入,为了考虑系统拓扑结构对电力系统暂态稳定的影响,提出一种基于图卷积神经网络(Graph convolutional network,GCN)和具有结构学习的层次图池化(Hierarchical graph po... 当前基于人工智能的电力系统暂态稳定评估研究多以欧式结构数据为输入,为了考虑系统拓扑结构对电力系统暂态稳定的影响,提出一种基于图卷积神经网络(Graph convolutional network,GCN)和具有结构学习的层次图池化(Hierarchical graph pooling with structure learning,HGP-SL)的电力系统暂态稳定评估模型。首先,解构电力系统,以母线为节点,输电线路为边,创建图这一典型非欧式结构数据;然后,结合图深度学习思想,通过提出的GCN+HGP-SL模型对解构后形成的电力系统潮流数据进行特征提取,建立其与电力系统暂态稳定之间的映射关系,其中HGP-SL包含对节点降采样和学习节点间结构两个步骤,其目的是捕捉重要节点的同时不破坏结构本身;最后,建立性能评价指标体系,选取对照神经网络组,对所提模型进行评估,结合算例分析各因素对模型的影响。算例分析表明,所提模型具有更好的综合性能表现。 展开更多
关键词 电力系统暂态稳定评估 非欧式结构数据 图深度学习 图卷积神经网络 具有结构学习的层次图池化
在线阅读 下载PDF
基于分层潜在语义驱动网络的事件检测
7
作者 肖梦南 贺瑞芳 马劲松 《计算机研究与发展》 EI CSCD 北大核心 2024年第1期184-195,共12页
事件检测旨在检测句子中的触发词并将其分类为预定义的事件类型.如何有效地表示触发词是实现该任务的核心要素.目前基于表示的方法通过复杂的深度神经网络来学习候选触发词的语义表示,以提升模型性能.然而,其忽略了2个问题:1)受句子语... 事件检测旨在检测句子中的触发词并将其分类为预定义的事件类型.如何有效地表示触发词是实现该任务的核心要素.目前基于表示的方法通过复杂的深度神经网络来学习候选触发词的语义表示,以提升模型性能.然而,其忽略了2个问题:1)受句子语境的影响,同一个触发词会触发不同的事件类型;2)受自然语言表达多样性的影响,不同的触发词会触发同一个事件类型.受变分自编码器中隐变量及其他自然语言处理(natural language processing,NLP)任务中分层结构的启发,提出基于分层潜在语义驱动网络(hierarchical latent semantic-driven network,HLSD)的事件检测方法,通过句子和单词的潜在语义信息来辅助缓解以上2个问题.模型从文本表示空间中分层降维到新的潜在语义空间,探索事件宏微观语境中更本质的影响信息.首先,通过BERT对候选句子进行编码,得到句子的表示和句子中单词的表示;其次,设计一个双重的潜在语义机制,并采用VAE挖掘句子和单词级潜在语义;最后,从不同粒度的上下文角度,提出采用一个由粗到细的分层结构来充分使用句子和单词的潜在信息,从而提升模型的性能.ACE2005英文语料库上的实验结果表明,所提方法的F1值在事件检测任务上达到了77.9%.此外,在实验部分对以上2个问题进行了定量分析,证明了所提方法的有效性. 展开更多
关键词 潜在语义 分层结构 变分自编码器 表示学习 事件检测
在线阅读 下载PDF
基于分区层次图的海量高维数据学习索引构建方法
8
作者 华悦琳 周晓磊 +2 位作者 范强 王芳潇 严浩 《计算机工程与科学》 CSCD 北大核心 2024年第7期1193-1201,共9页
学习索引是破解海量高维数据近似最近邻搜索问题的关键。然而,现有学习索引技术结果仅局限于单个分区中,且依赖于近邻图的构建。随着数据维度和规模的增长,索引难以对分区边界数据进行精确判断,并且构建时间复杂度增大,可扩展性难以保... 学习索引是破解海量高维数据近似最近邻搜索问题的关键。然而,现有学习索引技术结果仅局限于单个分区中,且依赖于近邻图的构建。随着数据维度和规模的增长,索引难以对分区边界数据进行精确判断,并且构建时间复杂度增大,可扩展性难以保障。针对上述问题,提出了基于分区层次图的学习索引方法PBO-HNSW。该方法对分区边界数据进行重新分配,并行构建分布式图索引结构,从而有效应对近似最近邻搜索问题所面临的挑战。实验结果表明,该方法能够在百万级海量高维数据上实现毫秒级的索引构建。当召回率为0.93时,PBO-HNSW方法构建时间仅为基线方法的36.4%。 展开更多
关键词 近似最近邻搜索 学习索引 层次可导航小世界图 分区学习 索引结构
在线阅读 下载PDF
基于异构图分层学习的细粒度多文档摘要抽取
9
作者 翁裕源 许柏炎 蔡瑞初 《计算机工程》 CAS CSCD 北大核心 2024年第3期336-344,共9页
抽取的目标是在多个文档中提取共有关键信息,其对简洁性的要求高于单文档摘要抽取。现有的多文档摘要抽取方法通常在句子级别进行建模,容易引入较多的冗余信息。为了解决上述问题,提出一种基于异构图分层学习的多文档摘要抽取框架,通过... 抽取的目标是在多个文档中提取共有关键信息,其对简洁性的要求高于单文档摘要抽取。现有的多文档摘要抽取方法通常在句子级别进行建模,容易引入较多的冗余信息。为了解决上述问题,提出一种基于异构图分层学习的多文档摘要抽取框架,通过层次化构建单词层级图和子句层级图来有效建模语义关系和结构关系。针对单词层级图和子句层级图这2个异构图的学习问题,设计具有不同层次更新机制的两层学习层来降低学习多种结构关系的难度。在单词层级图学习层,提出交替更新机制更新不同的粒度节点,以单词节点为载体通过图注意网络进行语义信息传递;在子句层级图学习层,提出两阶段分步学习更新机制聚合多种结构关系,第一阶段聚合同构关系,第二阶段基于注意力聚合异构关系。实验结果表明,与抽取式基准模型相比,该框架在Multinews数据集上取得了显著的性能提升,ROUGE-1、ROUGE-2和ROUGE-L分别提高0.88、0.23和2.27,消融实验结果也验证了两层学习层及其层次更新机制的有效性。 展开更多
关键词 抽取式多文档摘要 细粒度建模 异构图 分层学习 语义关系 结构关系
在线阅读 下载PDF
深度学习的研究与发展 被引量:65
10
作者 张建明 詹智财 +1 位作者 成科扬 詹永照 《江苏大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第2期191-200,共10页
针对以往浅层学习对特征表达能力不足和特征维度过多导致的维数灾难等现象,深度学习通过所特有的层次结构和其能够从低等级特征中提取高等级特征很好地解决了这些问题,并给人工智能带来了新的希望.首先介绍了深度学习的发展历程,并介绍... 针对以往浅层学习对特征表达能力不足和特征维度过多导致的维数灾难等现象,深度学习通过所特有的层次结构和其能够从低等级特征中提取高等级特征很好地解决了这些问题,并给人工智能带来了新的希望.首先介绍了深度学习的发展历程,并介绍了基于restricted boltzmann machines(RBM)、auto encoder(AE)和convolutional neural networks(CNN)的deep belief networks(DBN)、deep boltzmann machine(DBM)和stacked auto encoders(SAE)等深度模型.其次,对近几年深度学习在语音识别、计算机视觉、自然语言处理以及信息检索等方面的应用的介绍,说明了深度学习结构在相比较于其他结构的优越性和在不同任务上更好的适应性.最后通过对现有的深度学习在在线学习能力、大数据上和深度结构模型的改进上的思考和总结,展望了今后深度学习的发展方向. 展开更多
关键词 浅层学习 深度学习 层次结构 人工智能 机器学习
在线阅读 下载PDF
基于深度分层特征表示的行人识别方法 被引量:4
11
作者 孙锐 张广海 高隽 《电子与信息学报》 EI CSCD 北大核心 2016年第6期1528-1535,共8页
该文针对行人识别中的特征表示问题,提出一种混合结构的分层特征表示方法,这种混合结构结合了具有表示能力的词袋结构和学习适应性的深度分层结构。首先利用基于梯度的HOG局部描述符提取局部特征,再通过一个由空间聚集受限玻尔兹曼机组... 该文针对行人识别中的特征表示问题,提出一种混合结构的分层特征表示方法,这种混合结构结合了具有表示能力的词袋结构和学习适应性的深度分层结构。首先利用基于梯度的HOG局部描述符提取局部特征,再通过一个由空间聚集受限玻尔兹曼机组成的深度分层编码方法进行编码。对于每个编码层,利用稀疏性和选择性正则化进行无监督受限玻尔兹曼机学习,再应用监督微调来增强分类任务中视觉特征表示,采用最大池化和空间金字塔方法得到高层图像特征表示。最后采用线性支持向量机进行行人识别,提取深度分层特征遮挡等与目标无关部分自然分离,有效提高了后续识别的准确性。实验结果证明了所提出方法具有较高的识别率。 展开更多
关键词 行人识别 混合结构 深度学习 深度分层编码 受限玻尔兹曼机
在线阅读 下载PDF
基于模糊推理系统的非线性组合建模与预测方法研究(英文) 被引量:5
12
作者 董景荣 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第3期369-374,共6页
基于模糊推理系统在紧支集中能够逼近任意非线性连续函数的特性 ,提出了一种基于Takagi sugeno模糊规则基的非线性组合建模与预测新方法 ,以克服线性组合预测方法在解决非平衡时间序列组合建模问题所遇到的困难和存在的不足 ,并给出了... 基于模糊推理系统在紧支集中能够逼近任意非线性连续函数的特性 ,提出了一种基于Takagi sugeno模糊规则基的非线性组合建模与预测新方法 ,以克服线性组合预测方法在解决非平衡时间序列组合建模问题所遇到的困难和存在的不足 ,并给出了相应的基于学习自动机层次结构的优化算法确定模糊系统的参数和模糊子集的划分 ,理论分析和大量的经济预测实例表明 :该方法具有很强的学习与泛化能力 ,在处理诸如经济时间序列这种具有一定程度不确定性的非线性系统组合建模与预测方法有很好的应用 . 展开更多
关键词 非线性组合预测 模糊推理系统 学习自动机 层次结构
在线阅读 下载PDF
“数据结构”教学平台建设方案及应用效果 被引量:3
13
作者 杨晓波 陈邦泽 《实验室研究与探索》 CAS 北大核心 2014年第10期162-165,共4页
以学生为中心,以实验教学深化理论教学,调整了数据结构课程内容,研究积极有效的教学策略,通过案例教学、项目教学、构建课程教学网站、开发可视化CAI、开通教师博客等方式共享各种教学资源,整合各种教学服务,搭建了教学平台,实现了数据... 以学生为中心,以实验教学深化理论教学,调整了数据结构课程内容,研究积极有效的教学策略,通过案例教学、项目教学、构建课程教学网站、开发可视化CAI、开通教师博客等方式共享各种教学资源,整合各种教学服务,搭建了教学平台,实现了数据结构课程分层次教学,在实际教学中收到良好的教学效果,对创新型本科人才培养起到了积极的作用。 展开更多
关键词 数据结构 教学平台 可视化 分层次教学
在线阅读 下载PDF
智能控制的理论与实践 被引量:2
14
作者 蔡自兴 张钟俊 《中南矿冶学院学报》 CSCD 1989年第6期644-650,共7页
本文简介智能控制学科的产生和发展过程,全面综述智能控制的结构和智能控制系统原理以及智能控制的研究与应用领域,并讨论了智能控制的发展方向。
关键词 人工智能 控制论 控制器 机器人
在线阅读 下载PDF
基于K2算法的属性层级结构学习研究 被引量:1
15
作者 喻晓锋 马奕帆 +1 位作者 罗照盛 秦春影 《江西师范大学学报(自然科学版)》 CAS 北大核心 2021年第4期376-383,共8页
诊断测验所考察的属性之间往往存在某种层级关系,然而基于专家经验获得的属性层级关系易出现分歧或错误.该文将属性掌握模式作为输入,考察K2算法在不同阈值条件下学习得到属性层级结构的准确性.模拟研究和实证数据分析的结果表明:K2算... 诊断测验所考察的属性之间往往存在某种层级关系,然而基于专家经验获得的属性层级关系易出现分歧或错误.该文将属性掌握模式作为输入,考察K2算法在不同阈值条件下学习得到属性层级结构的准确性.模拟研究和实证数据分析的结果表明:K2算法对属性层级结构的学习有较高的成功率,并且K2算法对于4种基本层级结构有不同的敏感性,其中线性型和发散型对阈值的敏感性较低,而收敛型和无结构型对于阈值的敏感性较高. 展开更多
关键词 贝叶斯网络结构学习算法 属性层级结构 K2算法
在线阅读 下载PDF
基于ON-LSTM的业务过程模型深度自动生成 被引量:1
16
作者 朱锐 吕昌龙 +4 位作者 李彤 何亚辉 刘航 张存明 陈晔婷 《计算机集成制造系统》 EI CSCD 北大核心 2022年第10期3225-3237,共13页
为打破现有过程挖掘算法在日志缺失时无法使用带来的局限性,基于现有的深度学习、自然语言处理技术基础,提出一种新颖的从过程文本描述中深度自动生成业务过程模型的方法。对现有命名实体方法进行改进,通过BERT,BiLSTM,CRF构建活动实体... 为打破现有过程挖掘算法在日志缺失时无法使用带来的局限性,基于现有的深度学习、自然语言处理技术基础,提出一种新颖的从过程文本描述中深度自动生成业务过程模型的方法。对现有命名实体方法进行改进,通过BERT,BiLSTM,CRF构建活动实体识别模型,提出面向业务过程的活动实体识别方法;将语言模型从句子级别扩展到文档级别,提出一种通过递归体系结构有序神经网络(ON-LSTM)无监督地发现过程描述文档中所蕴含的活动实体间潜在的层次结构;通过活动实体的层次深度原则,将层次结构树转化为业务过程模型。通过对人工采集与标注的150个真实的SAP产品用户指南文本作为训练数据进行实验,并在ON-LSTM基础上采用K折交叉验证思想对数据进行多次分组实验,验证了所提方法的有效性。 展开更多
关键词 深度学习 业务过程发现 活动实体 层次结构 有序神经长短期记忆网络
在线阅读 下载PDF
融合多源信息的知识表示学习 被引量:3
17
作者 夏光兵 李瑞轩 +1 位作者 辜希武 刘伟 《计算机科学与探索》 CSCD 北大核心 2022年第3期591-597,共7页
在知识图谱中,实体的文本描述信息、实体的层次类型信息和图的拓扑结构信息中隐藏着丰富的内容,它们可以形成对原始三元组的有效补充,帮助提高知识图谱各种任务的效果。为了充分利用这些多源异质信息,首先通过一维卷积神经网络嵌入文本... 在知识图谱中,实体的文本描述信息、实体的层次类型信息和图的拓扑结构信息中隐藏着丰富的内容,它们可以形成对原始三元组的有效补充,帮助提高知识图谱各种任务的效果。为了充分利用这些多源异质信息,首先通过一维卷积神经网络嵌入文本描述信息,然后根据实体的层次类型信息构建投影矩阵,将三元组中的实体向量和实体的描述向量映射到特定的关系空间中来约束实体的语义信息,再基于图注意力机制融合图的拓扑结构信息,计算不同邻接点对实体的影响。在图注意力层中,计算了实体间的多跳关系来帮助改善数据稀疏的问题。最后,通过二维卷积神经网络来捕获不同维度间的全局信息,进一步提高模型的性能。链接预测实验结果表明,基于多源信息组合的知识表示学习模型(MCKRL)能够充分利用三元组以外的多源异质信息,因而相比于其他基线模型,该模型在链接预测任务上取得了更好的结果。 展开更多
关键词 知识表示学习 实体描述 层次类型 拓扑结构
在线阅读 下载PDF
基于深度图正则化矩阵分解的多视图聚类算法 被引量:7
18
作者 刘相男 丁世飞 王丽娟 《智能系统学报》 CSCD 北大核心 2022年第1期158-169,共12页
针对现实社会中由多种表示或视图组成的多视图数据广泛存在的问题,深度矩阵分解模型因其能够挖掘数据的层次信息而备受关注,但该模型忽略了数据的几何结构信息。为解决以上问题,本文提出基于深度图正则化矩阵分解的多视图聚类算法,通过... 针对现实社会中由多种表示或视图组成的多视图数据广泛存在的问题,深度矩阵分解模型因其能够挖掘数据的层次信息而备受关注,但该模型忽略了数据的几何结构信息。为解决以上问题,本文提出基于深度图正则化矩阵分解的多视图聚类算法,通过获取每个视图的局部结构信息和全局结构信息在逐层分解中加入两个图正则化限制,保护多视图数据的几何结构信息,同时将视图的权重与特征表示矩阵进行结合获得共识表示矩阵,最大化视角间的互补性,保证数据的一致性和差异性。除此之外,本文使用迭代更新变量的方法最小化目标函数,不断优化模型并进行收敛性分析。将本文算法和多个算法在三个人脸数据集和两个图像数据集上运行,通过多项指标的对比可以看出本文提出的算法具备良好的性能表现。 展开更多
关键词 多视图聚类 深度矩阵分解 几何结构 图正则化 矩阵分解 多视图表示学习 层次结构信息 深度学习
在线阅读 下载PDF
一种基于层级信息优化的有向网络表示学习方法 被引量:1
19
作者 李鑫超 李培峰 朱巧明 《计算机科学》 CSCD 北大核心 2021年第2期100-104,共5页
网络表示方法旨在将每个节点映射到低维向量空间,并保留节点在网络中的结构关系。有向网络的环中节点相互可达,破坏了非对称传递性,影响了模型对网络整体结构信息的学习。为削弱有向网络的环在表示学习中的影响,增强模型对全局结构信息... 网络表示方法旨在将每个节点映射到低维向量空间,并保留节点在网络中的结构关系。有向网络的环中节点相互可达,破坏了非对称传递性,影响了模型对网络整体结构信息的学习。为削弱有向网络的环在表示学习中的影响,增强模型对全局结构信息的感知,文中提出了一种针对有向网络表示学习的优化方法。该方法借助TrueSkill方法获取节点的层级信息,将该信息转化为边权重并引入表示学习过程。文中将此方法应用到已有的多种有向网络表示学习方法中,多个有向网络数据集上的链接预测和节点分类任务的实验结果表明,所提方法的性能相比原有方法得到了明显提升。 展开更多
关键词 有向网络 表示学习 层级信息 链路预测
在线阅读 下载PDF
分层强化学习综述 被引量:17
20
作者 赖俊 魏竞毅 陈希亮 《计算机工程与应用》 CSCD 北大核心 2021年第3期72-79,共8页
近年来强化学习愈发体现其强大的学习能力,2017年AlphaGo在围棋上击败世界冠军,同时在复杂竞技游戏星际争霸2和DOTA2中人类的顶尖战队也败于AI之手,但其自身又存在着自身的弱点,在不断的发展中瓶颈逐渐出现。分层强化学习因为能够解决... 近年来强化学习愈发体现其强大的学习能力,2017年AlphaGo在围棋上击败世界冠军,同时在复杂竞技游戏星际争霸2和DOTA2中人类的顶尖战队也败于AI之手,但其自身又存在着自身的弱点,在不断的发展中瓶颈逐渐出现。分层强化学习因为能够解决其维数灾难问题,使得其在环境更为复杂,动作空间更大的环境中表现出更加优异的处理能力,对其的研究在近几年不断升温。对强化学习的基本理论进行简要介绍,对Option、HAMs、MAXQ这3种经典分层强化学习算法进行介绍,之后对近几年在分层的思想下提出的分层强化学习算法从3个方面进行综述,并对其进行分析,讨论了分层强化学习的发展前景和挑战。 展开更多
关键词 分层强化学习 子策略共享 多层分层结构 自动分层
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部