The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR a...The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.展开更多
Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). Thi...Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.展开更多
基金supported by the National Nature Science Foundation of China (Project No.20576023)the Natural Science Foundation of Guangdong Province (Project No.06025660).
文摘The Cu-Zr-Ce-O catalysts prepared using the coprecipitation method exhibited better catalytic performance for CO selective oxidation. The Cu-Zr-Ce-O catalysts pretreated with different methods were studied by CO-TPR and XPS techniques. The results showed that the Cu-Zr-Ce-O catalyst pretreated with oxygen exhibited the best catalytic performance and had the widest operating temperature window, with CO conversion above 99% from 160 to 200 ℃. The O2 pretreatment caused an enrichment of the oxygen storaged on the Cu active species and promoted the conversion of adsorbed oxygen into surface lattice oxygen. It also improved the amount of Cu+/Cu^2+ ionic pair, and then facilitated the formation of CuO active species on the catalyst for selective CO oxidation.
基金the Post-Doctorial Foundation of China(No.20060400928)the Post-Doctorial Foundation of Jiangsu Province(No.0602001B)
文摘Dimethyl ether (DME) is a non-toxic fuel with high H/C ratio and high volumetric energy density, and could be served as an ideal source of H2/syngas production for application in solid oxide fuel cells (SOFC). This study presents results of DME partial oxidation over a 1.5 wt% Pt/Ce0.4Zr0.6O2 catalyst under the condition of gas hourly space velocity (GHSV) of 15000-60000 ml/(g·h), molar ratio of O2/DME of 0.5 and 500-700 ℃, and this temperature range was also the operation temperature range for intermediate temperature SOFC. The results indicated that the catalyst showed good activity for the selective partial oxidation of DME to H2/syngas. Under the working conditions investigated, DME was completely converted. Increase in reaction temperature enhanced the amount of syngas, but lowered the H2/CO ratio and yield of methane; while increase in reaction GHSV resulted in only slight variation in the distribution of products. The good catalytic activity of Pt supported on Ce0.4Zr0.6O2 for the partial oxidation of DME may be directly associated with the good oxygen storage capacity of the support, which is worth of further investigation to develop materials for application in SOFC.