基于风电场复杂运行环境和多分支混合集电线路的单相接地故障定位需求,提出一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short term memory networks,LSTM)混合模型(CNN-LSTM)的单相接地故障定位策...基于风电场复杂运行环境和多分支混合集电线路的单相接地故障定位需求,提出一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short term memory networks,LSTM)混合模型(CNN-LSTM)的单相接地故障定位策略。采集故障时零序电流,构建风电场单相接地故障数据集,将CNNLSTM混合模型改进为适合故障测距的预测模型,将该模型应用于在线故障定位。研究结果表明:与CNN和反向传播神经网络(backpropagation neural network,BP)相比,CNN-LSTM混合模型方法定位准确率更高,在不同故障距离和故障电阻情况下均可使用。研究结论为风电场集电线路接地故障定位提供参考。展开更多
Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based ...Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.展开更多
文摘基于风电场复杂运行环境和多分支混合集电线路的单相接地故障定位需求,提出一种基于卷积神经网络(convolutional neural network,CNN)和长短期记忆网络(long short term memory networks,LSTM)混合模型(CNN-LSTM)的单相接地故障定位策略。采集故障时零序电流,构建风电场单相接地故障数据集,将CNNLSTM混合模型改进为适合故障测距的预测模型,将该模型应用于在线故障定位。研究结果表明:与CNN和反向传播神经网络(backpropagation neural network,BP)相比,CNN-LSTM混合模型方法定位准确率更高,在不同故障距离和故障电阻情况下均可使用。研究结论为风电场集电线路接地故障定位提供参考。
基金The project was supported by Aeronautics Foundation of China (00E51022).
文摘Using the future desired input value, zero phase error controller enables the overall system's frequency response exhibit zero phase shift for all frequencies and a small gain error at low frequency range, and based on this, a new algorithm is presented to design the feedforward controller. However, zero phase error controller is only suitable for certain linear system. To reduce the tracking error and improve robustness, the design of the proposed feedforward controller uses a neural compensation based on diagonal recurrent neural network. Simulation and real-time control results for flight simulator servo system show the effectiveness of the proposed approach.