期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
基于分解技术的IZOA-Transformer-BiGRU短期风电功率预测 被引量:2
1
作者 蒲晓云 杨靖 +1 位作者 杨兴 宁媛 《电子测量技术》 北大核心 2025年第2期39-48,共10页
准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性... 准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性。首先,采用能量差值法确定变分模态分解(VMD)的子模态数,将具有较强随机波动性的原始风电功率分解为一系列相对平稳的子序列,从而更加充分地提取时序特征。其次,构建Transformer-BiGRU模型,引入多头注意力机制并行处理多个特征之间的交互关系,并利用BiGRU捕捉时序序列间的前后依赖性,从而提升预测性能。为了进一步优化模型性能,采用融合Singer混沌映射、透镜折射反向学习和单纯形法策略的改进斑马优化算法(IZOA),对Transformer-BiGRU模型的隐藏层神经元数、初始学习率、正则化系数和多头注意力头数四个关键超参数进行优化。最后,通过IZOA-Transformer-BiGRU对分解后的各子序列进行预测,经过叠加重构得到最终的预测结果。实验结果表明,与单一BiGRU模型相比,所提模型的决定系数提升了5.10%,平均绝对误差、均方根误差以及平均绝对百分比误差分别降低了56.17%、54.58%、54.55%,具有较高的预测精度。 展开更多
关键词 风电功率预测 变分模态分解 TRANSFORMER 双向门控循环单元 能量差值法 斑马优化算法
在线阅读 下载PDF
基于IZOA结合最小交叉熵的图像分割算法
2
作者 刘庭亭 何志琴 《电子测量技术》 北大核心 2025年第16期40-53,共14页
针对图像多阈值分割过程中存在的分割精度低、效率低、随着阈值增加分割效果不稳定等问题,提出了一种基于改进斑马优化算法(IZOA)的多阈值图像分割算法。首先,利用混沌映射方法初始化种群;其次,引入邻域波动策略精细化搜索;然后,结合杂... 针对图像多阈值分割过程中存在的分割精度低、效率低、随着阈值增加分割效果不稳定等问题,提出了一种基于改进斑马优化算法(IZOA)的多阈值图像分割算法。首先,利用混沌映射方法初始化种群;其次,引入邻域波动策略精细化搜索;然后,结合杂交与变异操作生成新的解,提高算法全局搜索能力;再采用精英保存策略保留最优解。使用图像分割前后得到的最小对称交叉熵作为适应度函数进行多阈值分割,表现出了更高的分割精度、分割效率以及分割的稳定性。实验结果表明,与ZOA、GWO、WOA等算法对比,基于IZOA分割图像的质量指标FSIM、SSIM和PSNR方面具有显著优势,最优截断均值占比分别达到91.7%、88.9%、100%。 展开更多
关键词 图像分割 斑马优化算法 最小对称交叉熵 多策略改进
在线阅读 下载PDF
基于ZOA优化VMD-IAWT岩石声发射信号降噪算法 被引量:1
3
作者 王婷婷 徐华一 +2 位作者 赵万春 刘永胜 何增军 《采矿与岩层控制工程学报》 EI 北大核心 2024年第4期150-166,共17页
针对岩石破裂过程中产生的声发射(AE)信号夹杂大量噪声的问题,提出了一种基于斑马优化算法(ZOA)改进变分模态分解(VMD)并与改进的自适应小波阈值(IAWT)联合的声发射信号降噪算法。利用ZOA算法优选出影响VMD分解效果的模态个数K和二次惩... 针对岩石破裂过程中产生的声发射(AE)信号夹杂大量噪声的问题,提出了一种基于斑马优化算法(ZOA)改进变分模态分解(VMD)并与改进的自适应小波阈值(IAWT)联合的声发射信号降噪算法。利用ZOA算法优选出影响VMD分解效果的模态个数K和二次惩罚因子α;通过相关系数将分解出的IMFs划分为有效分量、含噪分量和剔除分量;针对小波阈值(WT)降噪算法不具备自动调整小波基以及软、硬阈值函数存在偏差大和不连续的弊端,提出了IAWT算法去除IMFs中的噪声分量,并与有效分量合并重构,得到降噪后的AE信号。通过模拟和实测AE信号验证并与现有降噪算法对比,结果表明ZOA-VMD-IAWT降噪算法适合处理AE信号,信号的时频特征得以保留。研究结果可为岩石AE信号理论及实际工程应用提供参考。 展开更多
关键词 岩石声发射信号 斑马优化算法 变分模态分解 自适应小波阈值降噪
在线阅读 下载PDF
基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断 被引量:1
4
作者 戚晓利 王兆俊 +3 位作者 毛俊懿 王志文 崔德海 赵方祥 《振动与冲击》 EI CSCD 北大核心 2024年第11期165-175,共11页
针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合... 针对现有深度卷积神经网络对滚动轴承混合故障诊断效果不佳以及模型复杂度过高导致计算成本过大等问题,提出了一种基于RegNet-CSAM与ZOA-KELM模型的滚动轴承故障诊断方法。该模型由RegNet-CSAM网络和ZOA-KELM分类算法组成。首先,将融合了通道和空间特征的注意力机制CSAM与组卷积残差模块结合,提升该结构的表征能力,由此构建的RegNet-CSAM网络,模型复杂度为0.48GF;其次,在分类阶段将斑马优化核极限学习机(ZOA-KELM)替代原来网络中使用的Softmax函数完成最后的分类任务。滚动轴承故障诊断试验结果表明,RegNet网络对滚动轴承混合故障样本容易产生误判,CSAM的融入虽将RegNet网络的分类精度进一步提高,但是仍然存在一定程度的滚动轴承混合故障误判问题;而将ZOA-KELM替代Softmax函数后再对RegNet-CSAM网络输出特征进行分类,能够有效识别出滚动轴承的单一和混合故障,准确率达到了99.92%。所提方法对比其他网络,诊断精度最大提升5.02%,模型复杂度最大缩减32倍。 展开更多
关键词 故障诊断 滚动轴承 组卷积残差结构 注意力机制 斑马优化核极限学习机(zoa-KELM)
在线阅读 下载PDF
参数优化的IZOA-SVM机械设备故障诊断方法 被引量:1
5
作者 赵月静 邢天祥 秦志英 《机电工程》 CAS 北大核心 2024年第10期1894-1902,共9页
在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西... 在复杂的工作环境中,机械设备振动信号的复杂性常常会导致机械设备故障诊断的准确性不高,为解决设备运行中因信号复杂性引发的故障诊断难题,提出了一种参数优化的斑马优化算法优化支持向量机(IZOA-SVM)的故障诊断方法。首先,引入了柯西变异和反向学习的改进策略到斑马优化算法(ZOA)中,提出了改进的斑马优化算法(IZOA),旨在改善原有斑马优化算法在迭代后期容易陷入局部极值等问题,从而有效增强了其全局搜索能力;其次,利用IZOA优化支持向量机(SVM)的核参数g和惩罚参数c以寻找SVM最优参数组合[c,g],并构建了IZOA-SVM模型;然后,计算了样本的13个时域特征以构成特征向量,并将特征向量分别输入到IZOA-SVM模型、斑马优化算法优化支持向量机(ZOA-SVM)模型、粒子群算法优化支持向量机(PSO-SVM)模型、遗传算法优化支持向量机(GA-SVM)模型和支持向量机模型,进行了故障分类;最后,通过旋转机械振动及故障模拟试验验证了该方法的有效性。研究结果表明:IZOA-SVM模型在分类准确率方面得到了明显的提高,达到了98.33%;该模型能够精准而稳定地识别故障类型,提高故障识别的准确性,在准确率方面相较于其他对比方法表现出更为显著的优势。因此,该方法在全局搜索和故障分类准确性方面都取得了明显的改进,为复杂环境下的故障诊断提供了可参考的解决方案。 展开更多
关键词 机械设备 旋转机械 故障诊断 改进斑马优化算法 柯西变异 反向学习 支持向量机
在线阅读 下载PDF
改进全局ZOA优化MVMD-SCN的锂电池SOH估算 被引量:4
6
作者 郭喜峰 黄裕海 +2 位作者 单丹 原宝龙 宁一 《电子测量技术》 北大核心 2024年第5期22-30,共9页
锂电池健康状态(SOH)的准确估算对电池系统的健康管理起着重要作用,为提高SOH的估算精度,提出一种将参数优化后的多元变分模态分解(MVMD)和随机配置网络(SCN)相结合的SOH估算方法。从锂电池充放电过程中提取多个健康因子(HF)作为SOH估... 锂电池健康状态(SOH)的准确估算对电池系统的健康管理起着重要作用,为提高SOH的估算精度,提出一种将参数优化后的多元变分模态分解(MVMD)和随机配置网络(SCN)相结合的SOH估算方法。从锂电池充放电过程中提取多个健康因子(HF)作为SOH估算模型的输入,在斑马优化算法(ZOA)全局阶段引入自适应权重和最优领域波动策略,提高其全局搜索能力,得到改进全局的斑马优化算法(IGZOA),利用它对MVMD和SCN参数进行寻优,最后在9个基准函数测试IGZOA性能,在NASA和CALCE数据集上将所提方法与不同方法进行锂电池SOH的估算对比,结果表明,所提方法的均方根误差和绝对误差的平均值分别为0.84%,0.93%,具有更高的预测精度和泛化性。 展开更多
关键词 锂电池 健康状态 多元变分模态分解 改进斑马优化算法 随机配置网络
在线阅读 下载PDF
基于ZOA CNN GRU模型的煤层底板突水等级预测 被引量:2
7
作者 刘艳冬 刘滢 +3 位作者 卢兰萍 白峰青 王铁记 卫皓皓 《中国煤炭》 北大核心 2024年第6期44-51,共8页
针对传统循环神经网络煤层底板突水等级预测模型存在预测精度低、模型参数过多造成模型训练速率下降和出现过拟合现象等问题,引入斑马优化算法对卷积神经网络和门控循环单元神经网络的组合模型进行优化,建立ZOA CNN GRU神经网络煤层底... 针对传统循环神经网络煤层底板突水等级预测模型存在预测精度低、模型参数过多造成模型训练速率下降和出现过拟合现象等问题,引入斑马优化算法对卷积神经网络和门控循环单元神经网络的组合模型进行优化,建立ZOA CNN GRU神经网络煤层底板突水等级预测模型。为验证模型的可行性,采用九龙矿区煤层底板突水数据对模型进行训练,并将所建模型和CNN GRU神经网络以及GRU神经网络进行对比分析。研究结果表明:与CNN GRU神经网络和GRU神经网络模型相比,ZOA CNN GRU神经网络模型预测准确率最高,达到98%,且ZOA CNN GRU神经网络模型稳定性、泛化能力均优于对比模型。 展开更多
关键词 煤层底板 斑马优化算法 门控循环单元神经网络 zoa CNN GRU神经网络 突水等级
在线阅读 下载PDF
基于斑马优化算法的通道自动剪枝方法
8
作者 刘亚军 仵大奎 +1 位作者 范科峰 周文举 《计算机工程》 北大核心 2025年第11期72-79,共8页
卷积神经网络(CNN)的高计算和存储需求限制了其在资源有限的移动边缘设备上的应用推广。模型压缩技术能够在保持网络性能不变的同时显著降低CNN的计算量及参数量。通道剪枝已被证明在模型压缩方面的有效性,然而现有的大多数通道剪枝方... 卷积神经网络(CNN)的高计算和存储需求限制了其在资源有限的移动边缘设备上的应用推广。模型压缩技术能够在保持网络性能不变的同时显著降低CNN的计算量及参数量。通道剪枝已被证明在模型压缩方面的有效性,然而现有的大多数通道剪枝方法的剪枝标准是基于评估通道的重要性或人工设定的评价标准,此类方法的实现需要较多超参数的参与,且剪枝方法的本身也缺乏自动性。基于上述通道剪枝方法的局限性,提出一种新的基于斑马优化算法(ZOA)的通道自动剪枝方法。该方法首先使用k-medoids聚类剪枝以形成初步压缩的网络结构,接着利用ZOA对初步压缩形成的网络结构进行迭代优化,以搜索出最佳的紧凑网络结构。在两种图像数据集上的实验结果验证了该方法的高效性,尤其在CIFAR-10数据集上,该方法在ResNet-56上取得59.3%和56.7%的浮点运算数(FLOPs)和参数剪枝率的情况下,Top-1准确率提高了0.24百分点。 展开更多
关键词 通道剪枝 k-medoids聚类 迭代搜索 斑马优化算法 自动剪枝
在线阅读 下载PDF
基于多因素分析的地铁客流预测方法实证研究
9
作者 郑宣传 秦勇 +2 位作者 郭建媛 佟鑫 黄小林 《都市快轨交通》 北大核心 2025年第5期57-63,102,共8页
面向多因素下地铁线路客运量预测需求,通过特征挖掘、相关性分析,从时间、天气、线网规模、城市发展、节假日及活动等因素选取12项影响特征指标,针对XGBoost模型超参数优化难题,提出基于斑马优化算法(ZOA)的超参数优化算法;构建XGBoost-... 面向多因素下地铁线路客运量预测需求,通过特征挖掘、相关性分析,从时间、天气、线网规模、城市发展、节假日及活动等因素选取12项影响特征指标,针对XGBoost模型超参数优化难题,提出基于斑马优化算法(ZOA)的超参数优化算法;构建XGBoost-ZOA组合预测模型,设计时序数据预测的交叉验证方案,并在西安地铁开展实例验证。经ZOA算法优化后的预测模型,在1号线测试集上的预测误差平均误差百分比MAPE为3.85%,与经典的智能优化算法相比其预测效果更佳,证实该算法的先进性。XGBoost-ZOA组合预测模型在9条线路的平均MAPE达到5.18%,最大误差不超过7%,预测值与真实值曲线吻合度较高,同比SARIMA模型及LSTM模型,MAPE分别减少了17.8%及21.9%,均方根误差RMSE分别减少了10.8%及13.6%。最后,基于模型特征重要度,将9条线路分为趋势客流导向、假日活动客流导向和多因素均衡导向3类,发现假日活动主导的线路客流预测误差较大,周期趋势主导的线路客流预测误差较小,证实了该模型的解释性及实用性较好。 展开更多
关键词 城市轨道交通 多因素客流预测 XGBoost 斑马优化算法 超参数优化 特征重要度
在线阅读 下载PDF
深孔零件轴线直线度误差的在线测量与评定技术研究
10
作者 沈文华 王西彬 +2 位作者 钱泳豪 刘志兵 宋慈 《中国机械工程》 北大核心 2025年第9期2011-2021,共11页
为实现深孔零件轴线直线度误差的精准在线测量,融合电涡流位移传感器、电磁超声换能器、旋转编码器和激光干涉仪构建了一种多传感器集成式在线测量系统。通过分析空间样点集的排列分布状态,提出了基于正余弦分布特性的粗大误差过滤法,... 为实现深孔零件轴线直线度误差的精准在线测量,融合电涡流位移传感器、电磁超声换能器、旋转编码器和激光干涉仪构建了一种多传感器集成式在线测量系统。通过分析空间样点集的排列分布状态,提出了基于正余弦分布特性的粗大误差过滤法,并利用卡尔曼滤波法降低了随机误差的影响,获得了更接近零件真实轮廓的数据信息。以逼近最小区域为原则,将轴线直线度误差评定转化为参数优化问题,并采用改进斑马优化算法对该问题进行求解。经商用激光跟踪仪的对比测量实验,开发测量系统在1500 mm的深孔零件(内径为150 mm)长度范围内的测量误差仅为0.053 mm,直线度测量误差小于0.065 mm/m,满足企业要求的直线度误差0.15 mm/m,能够有效指导深孔零件的加工过程。 展开更多
关键词 深孔零件 轴线直线度误差 多传感器集成式在线测量 改进斑马优化算法
在线阅读 下载PDF
融合正切搜索与竞争交配的斑马优化算法及应用 被引量:2
11
作者 苏晨 王防修 黄淄博 《计算机科学与探索》 北大核心 2025年第4期945-963,共19页
针对斑马优化算法(ZOA)在求解最优解时存在早熟收敛和容易陷入局部最优的缺陷,提出了一种融合正切搜索与竞争交配的斑马优化算法(TZOA)。对该算法使用了正切搜索策略,增加种群多样性防止陷入局部最优解,并使用双曲余弦因子作为调节参数... 针对斑马优化算法(ZOA)在求解最优解时存在早熟收敛和容易陷入局部最优的缺陷,提出了一种融合正切搜索与竞争交配的斑马优化算法(TZOA)。对该算法使用了正切搜索策略,增加种群多样性防止陷入局部最优解,并使用双曲余弦因子作为调节参数,避免影响收敛速度。将野马优化算法(WHO)的放牧行为与斑马优化算法的觅食行为共同组成双种群共生策略,提高算法前期的全局探索能力与后期的局部收敛能力。加入一种全新的竞争交配机制进一步提高种群多样性与局部探索范围。实验部分则通过与改进策略、近几年优秀算法、其他作者改进ZOA算法分别在14个CEC2017测试函数的10、30、50维上进行测试,并使用种群多样性分析、Wilcoxon秩和检验、探索开发分析和运行时间对比图来验证算法的性能。实验结果表明,TZOA相较于其他几种智能优化算法具有更好的求解能力与精度。同时将TZOA应用于机器人路径规划问题,在简单地图与复杂地图测试所得结果中皆为最佳值,进一步证明了改进算法TZOA的有效性。 展开更多
关键词 斑马优化算法 正切搜索 双曲余弦函数 野马优化算法 双种群共生 竞争交配 机器人路径规划
在线阅读 下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力 被引量:4
12
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归机 机器学习 测井曲线 长7段 三叠系 陇东地区
在线阅读 下载PDF
基于数据分解与斑马算法优化的混合核极限学习机月径流预测 被引量:9
13
作者 李菊 崔东文 《长江科学院院报》 CSCD 北大核心 2024年第6期42-50,共9页
为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(... 为提高月径流预测精度,改进混合核极限学习机(HKELM)预测性能,提出小波包分解(WPT)-斑马优化算法(ZOA)-HKELM组合模型。利用WPT处理月径流时序数据,构建局部高斯径向基核函数和全局多项式核函数相混合的HKELM;通过ZOA优化HKELM超参数(正则化参数、核参数、权重系数),建立WPT-ZOA-HKELM组合模型,并构建WPT-遗传算法(GA)-HKELM、WPT-灰狼优化(GWO)算法-HKELM、WPT-鲸鱼优化算法(WOA)-HKELM、WPT-ZOA-极限学习机(ELM)、WPT-ZOA-最小二乘支持向量机(LSSVM)、ZOA-HKELM作对比模型,通过黑河流域莺落峡、讨赖河水文站月径流时间序列预测实例对各模型进行检验。结果表明:(1)莺落峡、讨赖河水文站月径流时间序列WPT-ZOA-HKELM模型预测的平均绝对百分比误差分别为1.054%、0.761%,决定系数均达0.999 9,优于其他对比模型,具有更高的预测精度,预测效果更好。(2)利用ZOA优化HKELM超参数,可提高HKELM预测性能,优化效果优于GWO、WOA、GA。(3)预测模型能充分发挥WPT、ZOA和HKELM优势,提高月径流预测精度;在相同分解和优化情形下,HKELM的预测性能优于ELM、LSSVM。 展开更多
关键词 月径流预测 时间序列 斑马优化算法 混合核极限学习机 小波包变换 超参数优化
在线阅读 下载PDF
基于多策略融合斑马优化算法的特征选择方法 被引量:2
14
作者 王震 王新春 +2 位作者 杨培宏 费鹏宇 郑学奎 《现代电子技术》 北大核心 2024年第18期149-155,共7页
针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受... 针对传统斑马优化算法在求解复杂优化问题时精度低、收敛速度慢和易陷入局部最优的不足,提出一种多策略融合的改进斑马优化算法(IZOA)。首先,为解决斑马个体初始位置分布不均匀的问题,引入混沌映射来增加探索过程的种群多样性;其次,受自适应权重和黄金正弦算法思想启发,提出一种基于自适应递减权重和黄金正弦更新机制的位置更新策略,用于改进斑马算法的局部寻优与全局探索能力;然后,进行标准测试函数实验,验证了IZOA能够有效提升寻优精度和收敛速度;最后,将K近邻分类器作为待优化目标,选取UCI库的12个标准数据集进行特征选择实验,并利用改进后的算法在特征选择模型中进行最优特征子集搜寻。实验结果表明,相比传统算法,所提算法的平均分类准确率提升4.47%,平均适应度值降低2.5%,验证了该算法在特征选择领域的优越性。 展开更多
关键词 斑马优化算法 多策略融合 特征选择 混沌映射 自适应权重 黄金正弦算法 K近邻分类器
在线阅读 下载PDF
多策略融合改进的斑马优化算法 被引量:3
15
作者 任庆欣 冯锋 《计算机科学》 CSCD 北大核心 2024年第S02期46-52,共7页
为解决斑马优化算法易陷入局部寻优、收敛速度慢等一系列问题,提出一种多策略融合改进的斑马优化算法(MSI-ZOA)。首先,利用Tent混沌映射产生随机序列的方式初始化种群,提高初始化种群在搜索空间的分布质量,加强全局探索能力。其次,利用... 为解决斑马优化算法易陷入局部寻优、收敛速度慢等一系列问题,提出一种多策略融合改进的斑马优化算法(MSI-ZOA)。首先,利用Tent混沌映射产生随机序列的方式初始化种群,提高初始化种群在搜索空间的分布质量,加强全局探索能力。其次,利用莱维飞行的重尾特性,产生较大步长,增加搜索空间的覆盖率,加强在斑马优化算法(ZOA)的觅食阶段的全局探索能力。接着,使用一种双曲线余弦增强因子的正余弦优化算法,将其应用在ZOA算法的抵御捕食者攻击阶段,以有效挑出局部最优解,提高收敛速度。最后,使用8个基准函数对MSI-ZOA算法、ZOA算法、秃鹰优化算法(AVOA)、人工蜂鸟算法(AHA)、大猩猩部队优化算法(GTO)、算术优化算法(AOA)和北方苍鹰优化算法(NGO)进行测试,结果表明MSI-ZOA算法相比其他6种算法在收敛速度和全局搜索能力上更具优势。 展开更多
关键词 斑马优化算法 Tent混沌映射 莱维飞行 双曲线余弦增强因子 正余弦优化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部