期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4防震锤的定位识别与丢失检测
1
作者 张元伟 陈春玲 张楠楠 《计算机应用与软件》 北大核心 2025年第3期135-140,161,共7页
针对高压线路巡检中防震锤的识别定位与丢失检测,提出一种基于改进YOLOv4的算法模型。首先根据收集而来的巡检图像做有目的地数据增强,扩大数据集。然后融入迁移学习思想,在模型训练过程中使用预权重以及进行冻结训练。最后将YOLOv4原... 针对高压线路巡检中防震锤的识别定位与丢失检测,提出一种基于改进YOLOv4的算法模型。首先根据收集而来的巡检图像做有目的地数据增强,扩大数据集。然后融入迁移学习思想,在模型训练过程中使用预权重以及进行冻结训练。最后将YOLOv4原始主干特征提取网络替换成轻量型网络MobileNet V2,将深度可分离卷积运用于网络中,大大减少参数量。对实验结果进行对比分析,改进后的算法模型综合性能表现良好,也符合巡检要求。 展开更多
关键词 深度学习 目标检测 防震锤 yolov4 MobileNet V2
在线阅读 下载PDF
基于改进YOLOv4的水稻病害快速检测方法 被引量:6
2
作者 严陈慧子 田芳明 +2 位作者 谭峰 王思琪 石景秀 《江苏农业科学》 北大核心 2023年第6期187-194,共8页
针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网... 针对水稻图像中复杂背景带来的病斑难以识别、检测速度慢等问题,以水稻稻瘟病、白叶枯病和胡麻斑病图像为研究对象,提出一种基于改进YOLOv4的水稻病害检测方法,该方法以YOLOv4模型为主体框架,采用轻量级网络MobileNet V3代替原始主干网络CSPDarkNet-53,并通过在颈部网络添加坐标注意力模块(coordinate attention module,CAM)来提高模型的性能。结果表明,改进后的模型对水稻稻瘟病、白叶枯病、胡麻斑病的识别准确率均有所提升,平均精度均值(mean average precision,mAP)为85.34%,与原始YOLOv4模型相比,mAP提高了1.32%,每秒钟检测图像的帧数(frames per second,FPS)为53.43帧/s,检测速度提高了49.62%,说明研究得出的方法具有较高的平均准确率及较快的检测速度,能够用于田间复杂环境下的水稻病害快速识别。 展开更多
关键词 水稻病害 目标检测 yolov4 MobileNet V3 坐标注意力
在线阅读 下载PDF
轻量化的YOLOv4目标检测算法 被引量:18
3
作者 张宝朋 康谦泽 +2 位作者 李佳萌 郭俊宇 陈少华 《计算机工程》 CAS CSCD 北大核心 2022年第8期206-214,共9页
YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时... YOLOv4目标检测算法主干网络庞大且参数量和计算量过多,难以部署在算力和存储资源有限的移动端嵌入式设备上。提出一种改进的YOLOv4目标检测算法,使用轻量化的ShuffleNet V2网络作为主干特征提取网络,更换模型激活函数及扩大卷积核,同时将YOLOv4网络中的普通卷积替换为深度可分离卷积,降低算法参数量、计算量和模型占用空间。在ShuffleNet V2网络结构的改进过程中分析并剪裁其基本组件,利用2个3×3卷积核级联的方式增强网络感受野,并使用Mish激活函数进一步提升网络检测精度和模型推理速度。在GPU平台和VisDrone 2020数据集上的实验结果表明,与YOLOv4算法相比,改进的YOLOv4算法在牺牲1.8个百分点的检测精度情况下,提高了27%的检测速度,压缩了23.7%的模型容量,并且能够充分发挥ZYNQ平台并行高速数据处理及低功耗的优势。 展开更多
关键词 yolov4目标检测 ShuffleNet V2网络模型 卷积运算 轻量化网络 ZYNQ平台
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部