烟丝的宽度是衡量卷烟质量的重要指标,为了能够实时把控烟丝质量,该文设计一种烟丝宽度实时在线检测方法。该文将YOLOv4中的SPP和PANet结构进行融合,并将输出三种输出尺度改为一种输出尺度,使改进后的YOLOv4算法结构更加简单,在性能几...烟丝的宽度是衡量卷烟质量的重要指标,为了能够实时把控烟丝质量,该文设计一种烟丝宽度实时在线检测方法。该文将YOLOv4中的SPP和PANet结构进行融合,并将输出三种输出尺度改为一种输出尺度,使改进后的YOLOv4算法结构更加简单,在性能几乎不下降的情况下,运算速度提升近35%;烟丝宽度计算方法是该文设计的MCS(Moving Center Search)中心移动搜索法。该方法能够自动搜索出烟丝的两个侧边,并较为精确地计算出烟丝宽度,计算精度可达0.2毫米。将MCS烟丝宽度计算方法与该文改进后的YOLOv4模型相结合,能够进行实时在线的烟丝宽度检测,实时把控烟丝生产质量,提升生产效率。展开更多
由于X光安检图像存在背景复杂,重叠遮挡现象严重,危险品摆放方式、形状差异较大等问题,导致检测难度较高。针对上述问题,本文在YOLOv4的基础上,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化(Atrous Space Pyramid Pooling,...由于X光安检图像存在背景复杂,重叠遮挡现象严重,危险品摆放方式、形状差异较大等问题,导致检测难度较高。针对上述问题,本文在YOLOv4的基础上,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化(Atrous Space Pyramid Pooling,ASPP)模型,以此增大感受野,聚合多尺度上下文信息。然后,通过K-means聚类方法生成更适合X光安检危险品检测的初始候选框。其中,模型训练时采用余弦退火优化学习率,进一步加速模型收敛,提高模型检测精度。实验结果表明,本文提出的ASPP-YOLOv4检测算法在SIXRay数据集上的mAP达到85.23%。该方法能有效减少X光安检图像中危险品的误检率,提高小目标危险品的检测能力。展开更多
为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像...为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。展开更多
文摘烟丝的宽度是衡量卷烟质量的重要指标,为了能够实时把控烟丝质量,该文设计一种烟丝宽度实时在线检测方法。该文将YOLOv4中的SPP和PANet结构进行融合,并将输出三种输出尺度改为一种输出尺度,使改进后的YOLOv4算法结构更加简单,在性能几乎不下降的情况下,运算速度提升近35%;烟丝宽度计算方法是该文设计的MCS(Moving Center Search)中心移动搜索法。该方法能够自动搜索出烟丝的两个侧边,并较为精确地计算出烟丝宽度,计算精度可达0.2毫米。将MCS烟丝宽度计算方法与该文改进后的YOLOv4模型相结合,能够进行实时在线的烟丝宽度检测,实时把控烟丝生产质量,提升生产效率。
文摘由于X光安检图像存在背景复杂,重叠遮挡现象严重,危险品摆放方式、形状差异较大等问题,导致检测难度较高。针对上述问题,本文在YOLOv4的基础上,结合空洞卷积对其网络结构进行改进,加入空洞空间金字塔池化(Atrous Space Pyramid Pooling,ASPP)模型,以此增大感受野,聚合多尺度上下文信息。然后,通过K-means聚类方法生成更适合X光安检危险品检测的初始候选框。其中,模型训练时采用余弦退火优化学习率,进一步加速模型收敛,提高模型检测精度。实验结果表明,本文提出的ASPP-YOLOv4检测算法在SIXRay数据集上的mAP达到85.23%。该方法能有效减少X光安检图像中危险品的误检率,提高小目标危险品的检测能力。
文摘为实现田间环境下对玉米苗和杂草的高精度实时检测,本文提出一种融合带色彩恢复的多尺度视网膜(Multi-scale retinex with color restoration,MSRCR)增强算法的改进YOLOv4tiny模型。首先,针对田间环境的图像特点采用MSRCR算法进行图像特征增强预处理,提高图像的对比度和细节质量;然后使用Mosaic在线数据增强方式,丰富目标检测背景,提高训练效率和小目标的检测精度;最后对YOLOv4tiny模型使用K-means++聚类算法进行先验框聚类分析和通道剪枝处理。改进和简化后的模型总参数量降低了45.3%,模型占用内存减少了45.8%,平均精度均值(Mean average precision,mAP)提高了2.5个百分点,在Jetson Nano嵌入式平台上平均检测帧耗时减少了22.4%。本文提出的PruneYOLOv4tiny模型与Faster RCNN、YOLOv3tiny、YOLOv43种常用的目标检测模型进行比较,结果表明:PruneYOLOv4tiny的mAP为96.6%,分别比Faster RCNN和YOLOv3tiny高22.1个百分点和3.6个百分点,比YOLOv4低1.2个百分点;模型占用内存为12.2 MB,是Faster RCNN的3.4%,YOLOv3tiny的36.9%,YOLOv4的5%;在Jetson Nano嵌入式平台上平均检测帧耗时为131 ms,分别是YOLOv3tiny和YOLOv4模型的32.1%和7.6%。可知本文提出的优化方法在模型占用内存、检测耗时和检测精度等方面优于其他常用目标检测算法,能够为硬件资源有限的田间精准除草的系统提供可行的实时杂草识别方法。