期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv8的交通场景实例分割算法 被引量:2
1
作者 赵南南 高翡晨 《计算机工程》 北大核心 2025年第1期198-207,共10页
提出一种基于改进型YOLOv8的实例分割算法(DE-YOLO)。为减少图像中复杂背景的干扰,引入高效多尺度注意力机制,跨维交互使各特征组内空间语义特征平均分布。在主干网络部分,使用可变形卷积DCNv2结合C2f卷积层,突破原始卷积限制,提升可变... 提出一种基于改进型YOLOv8的实例分割算法(DE-YOLO)。为减少图像中复杂背景的干扰,引入高效多尺度注意力机制,跨维交互使各特征组内空间语义特征平均分布。在主干网络部分,使用可变形卷积DCNv2结合C2f卷积层,突破原始卷积限制,提升可变性。为减小有害梯度并提升检测器精度,采用动态非单调聚焦机制Wise-交并比(WIoU)替代联合完全交并(CIoU)损失函数进行质量评估,优化检测框定位,提升分割精度。同时,通过开启Mixup数据增强处理,充实数据集,丰富训练特征,提升模型学习能力。实验结果表明,DE-YOLO在城市景观数据集Cityscapes中的掩模平均精度均值(mAPmask)较基准模型YOLOv8n-seg提高了2.0百分点,IoU阈值为0.5时的平均精度提升了3.2百分点,所提算法在提升精度的同时,保持了优良的检测速度和较少的参数量,模型参数量较同类模型低2.2~31.3百分点。 展开更多
关键词 yolov8网络 实例分割 高效多尺度注意力 可变形卷积 损失函数
在线阅读 下载PDF
基于改进的YOLOv8算法的钢材缺陷检测
2
作者 彭菊红 张弛 +3 位作者 高谦 张光明 谈栋华 赵明俊 《计算机工程》 北大核心 2025年第7期152-160,共9页
在工业场景下钢材表面缺陷检测技术存在检测精度低、收敛速度慢等问题。为此,提出一种改进的YOLOv8算法YOLOv8n-MDC。首先,在骨干网络中加入多尺度交叉融合网络(MCN),通过在特征层之间建立更紧密的连接,促进信息的均匀传递,减少跨层特... 在工业场景下钢材表面缺陷检测技术存在检测精度低、收敛速度慢等问题。为此,提出一种改进的YOLOv8算法YOLOv8n-MDC。首先,在骨干网络中加入多尺度交叉融合网络(MCN),通过在特征层之间建立更紧密的连接,促进信息的均匀传递,减少跨层特征融合时的语义信息损失,从而增强模型对钢材缺陷的感知能力;其次,在模块中引入可变形卷积,自适应地改变卷积核的形状与位置,从而更灵活地捕捉不规则缺陷的边缘特征,减少信息丢失,提升检测的准确性;最后,加入坐标注意力(CA)机制,将位置信息嵌入到通道中,解决了位置信息丢失的问题,使模型能够更精确地感知缺陷的位置及其形态特征,从而提升检测的精度和稳定性。在NEU-DET数据集上的实验结果表明,YOLOv8n-MDC算法的mAP@0.5达到了81.0%,相比原基准网络提升了4.2百分点,该算法收敛速度较快、精度较高,更能满足实际工业生产的要求。 展开更多
关键词 多尺度交叉融合网络 yolov8网络 坐标注意力机制 钢材缺陷检测 可变形卷积
在线阅读 下载PDF
基于改进YOLOv8的密集行人检测模型
3
作者 黄昆 齐肇建 +3 位作者 王娟敏 胡倩 胡伟超 皮建勇 《计算机工程》 北大核心 2025年第5期133-142,共10页
密集行人检测是公共智能监控的关键技术,其采用目标检测方法对视频中的行人位置和数量进行检测,进而实现对视频中人群的智能监控。在人员密集场景下因遮挡和行人的目标太小造成漏检。为此,提出一种改进YOLOv8检测模型Crowd-YOLOv8。首先... 密集行人检测是公共智能监控的关键技术,其采用目标检测方法对视频中的行人位置和数量进行检测,进而实现对视频中人群的智能监控。在人员密集场景下因遮挡和行人的目标太小造成漏检。为此,提出一种改进YOLOv8检测模型Crowd-YOLOv8。首先,在主干网络使用nostride-Conv-SPD模块,增强对图像小目标特征等细粒度信息的提取能力;其次,在YOLOv8网络的颈部引入小目标检测头和CARAFE上采样算子对各尺度特征进行融合,以提高在小目标情况下的检测效果。实验结果表明,所提模型在CrowdHuman数据集上mAP@0.5和mAP@0.5∶0.95分别取得了84.3%和58.2%的检测效果,与原YOLOv8n相比分别提高了3.7和5.2百分点;在WiderPerson数据集上取得了88.4%和67.4%,与原YOLOv8n相比提高了1.1和1.5百分点。 展开更多
关键词 密集行人检测 yolov8网络 nostride-Conv-SPD模块 CARAFE算子 小目标检测头
在线阅读 下载PDF
一种基于YOLOv8的轻量化盲区检测网络 被引量:3
4
作者 李问渠 陈继清 +1 位作者 郝科崴 李明宇 《现代电子技术》 北大核心 2024年第16期163-170,共8页
近年来,全国的交通安全形势日益严峻,交通事故频繁发生,人员伤亡和财产损失惨重。其中,因视觉盲区受限引起的人车碰撞事故最为常见,由于传感器的高昂造价和在盲区检测方面的研究应用较少,预防此类事故主要依靠司机驾驶经验。针对盲区检... 近年来,全国的交通安全形势日益严峻,交通事故频繁发生,人员伤亡和财产损失惨重。其中,因视觉盲区受限引起的人车碰撞事故最为常见,由于传感器的高昂造价和在盲区检测方面的研究应用较少,预防此类事故主要依靠司机驾驶经验。针对盲区检测和研究的不足,提出一种简洁高效的轻量化盲区检测网络BsDet和BsDet+。轻量化网络以最先进的YOLOv8为基础,结合其他YOLO网络的优点,在头部和颈部进行了轻量化重构,在特征提取部分使用改进的深度可分离卷积降低网络的参数量与计算量。在特定层使用更大的卷积核来扩大感受野,进一步提高网络的检测精度。在构建的盲区数据集进行实验,实验结果表明,BsDet拥有97.72%的mAP和300.76 f/s的FPS,BsDet+的mAP和FPS分别为99.35%和181.31 f/s,相比于SOTA方法,提高了36.8%的检测速度和1.44%的mAP。两种网络分别在树莓派、安卓手机和便携式计算机上进行部署与测试,结果显示在任何平台上,BSDet均拥有最高的检测速度。BsDet和BsDet+可适用于不同性能的硬件与检测需求,具有设备要求低、准确率高、速度快等特点,不仅为轻量化设计提供了借鉴,也能够有效改善基于视觉的辅助驾驶技术。 展开更多
关键词 交通事故 盲区检测 轻量化网络 yolov8网络 深度可分离卷积网络 大卷积核
在线阅读 下载PDF
基于YOLOv8n的猪肉新鲜度图像识别算法
5
作者 王炼 柳军 +1 位作者 皮杰 王道营 《食品与机械》 北大核心 2025年第5期98-104,共7页
[目的]基于计算机视觉技术,实现规模化冷鲜肉产业链中对猪肉新鲜度的准确、快速和无损检测。[方法]提出了一种基于YOLOv8n的猪肉新鲜度图像识别算法。利用多种数据增强方法相结合加强对图像中猪肉特征的提取,采用迁移学习的试验方法并... [目的]基于计算机视觉技术,实现规模化冷鲜肉产业链中对猪肉新鲜度的准确、快速和无损检测。[方法]提出了一种基于YOLOv8n的猪肉新鲜度图像识别算法。利用多种数据增强方法相结合加强对图像中猪肉特征的提取,采用迁移学习的试验方法并选择适配的优化器,改善模型的训练权重,从而提高最终的识别准确率。以YOLOv8n图像识别算法为基础,通过对算法进行数据增强、改善优化器后,构成改进方法后的YOLOv8n-cls模型。[结果]迁移学习并改善优化器后的猪肉新鲜度图像识别准确率平均值为99.4%,召回率为83.8%,图像识别的平均计算精度(mAP)为91.4%,图像识别帧率为149 Hz,体现出了良好的试验效果。模型在通过归一化训练和消融试验后的猪肉新鲜度图像识别准确率为99.9%,提高了0.5%。[结论]改进方法后的YOLOv8n-cls在保证应有的识别速度的同时提升了图像识别精度,可满足实际生产中猪肉新鲜度实时检测识别的需求。 展开更多
关键词 猪肉 新鲜度 无损检测 深度学习 yolov8n网络 图像识别
在线阅读 下载PDF
基于改进YOLOv8的堆叠零件实例分割研究 被引量:1
6
作者 王众玄 邹光明 +2 位作者 顾浩文 许艳涛 李陈佳瑞 《机床与液压》 北大核心 2024年第19期9-16,共8页
为了实现复杂工业环境下机器人对堆叠零件的快速识别拣选,构建一种改进的YOLOv8s实例分割模型,并应用于堆叠零件实时识别分割中。针对堆叠工业零件不易分割的问题,将原始模型的主干网络替换为提取特征能力更强的PoolFormer主干网络,提... 为了实现复杂工业环境下机器人对堆叠零件的快速识别拣选,构建一种改进的YOLOv8s实例分割模型,并应用于堆叠零件实时识别分割中。针对堆叠工业零件不易分割的问题,将原始模型的主干网络替换为提取特征能力更强的PoolFormer主干网络,提升堆叠零件边缘分割效果;为了更好地过滤掉多余背景信息,保留关键信息,引入了效果更好的CARAFE上采样模块。试验结果表明,改进后模型的分割平均精度和预测框平均精度分别为93.57%和97.47%,相比原模型提升了1.89%和1.23%,且远高于同类型的YOLACT++和SOLOv2模型,验证了改进模型的有效性。 展开更多
关键词 堆叠零件 实例分割 yolov8网络 主干网络 上采样
在线阅读 下载PDF
Seedling Stage Corn Line Detection Method Based on Improved YOLOv8
7
作者 LI Hongbo TIAN Xin +5 位作者 RUAN Zhiwen LIU Shaowen REN Weiqi SU Zhongbin GAO Rui KONG Qingming 《智慧农业(中英文)》 CSCD 2024年第6期72-84,共13页
[Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under c... [Objective]Crop line extraction is critical for improving the efficiency of autonomous agricultural machines in the field.However,traditional detection methods struggle to maintain high accuracy and efficiency under challenging conditions,such as strong light exposure and weed interference.The aims are to develop an effective crop line extraction method by combining YOLOv8-G,Affinity Propagation,and the Least Squares method to enhance detection accuracy and performance in complex field environments.[Methods]The proposed method employs machine vision techniques to address common field challenges.YOLOv8-G,an improved object detection algorithm that combines YOLOv8 and Ghost‐NetV2 for lightweight,high-speed performance,was used to detect the central points of crops.These points were then clustered using the Affinity Propagation algorithm,followed by the application of the Least Squares method to extract the crop lines.Comparative tests were conducted to evaluate multiple backbone networks within the YOLOv8 framework,and ablation studies were performed to validate the enhancements made in YOLOv8-G.[Results and Discussions]The performance of the proposed method was compared with classical object detection and clustering algorithms.The YOLOv8-G algorithm achieved average precision(AP)values of 98.22%,98.15%,and 97.32%for corn detection at 7,14,and 21 days after emergence,respectively.Additionally,the crop line extraction accuracy across all stages was 96.52%.These results demonstrate the model's ability to maintain high detection accuracy despite challenging conditions in the field.[Conclusions]The proposed crop line extraction method effectively addresses field challenges such as lighting and weed interference,enabling rapid and accurate crop identification.This approach supports the automatic navigation of agricultural machinery,offering significant improvements in the precision and efficiency of field operations. 展开更多
关键词 crop row detection yolov8-G BACKBONE affinity propagation least square method
在线阅读 下载PDF
基于图像特征增强的低照度目标检测算法 被引量:3
8
作者 黄玉龙 张晓玲 《电子测量技术》 北大核心 2024年第13期167-175,共9页
低照度环境会导致图像目标特征不明显,噪声干扰严重等情况,影响目标检测器的检测性能。针对以上问题,构建了一个多尺度图像特征增强模块FEM,并与YOLOv8s目标检测网络联合,构建了端到端的低照度目标检测算法FE-YOLO。首先,使用FEM从输入... 低照度环境会导致图像目标特征不明显,噪声干扰严重等情况,影响目标检测器的检测性能。针对以上问题,构建了一个多尺度图像特征增强模块FEM,并与YOLOv8s目标检测网络联合,构建了端到端的低照度目标检测算法FE-YOLO。首先,使用FEM从输入图像中构建三个不同尺度下的特征信息并进行高效融合,得到具有丰富特征表达的增强图像。然后,在YOLOv8s颈部网络中添加目标特征增强模块TFE,通过抑制高层特征中的背景噪声信息,突出目标特征的表达能力。实验结果表明:在低照度图像目标检测数据集ExDark上的平均精度均值(mAP)达到了75.63%,与原始的YOLOv8s算法相比,提高了3.03%,本文算法在低照度目标检测任务中取得了更好的检测效果。 展开更多
关键词 目标检测 低照度图像 yolov8网络 图像增强 特征融合
在线阅读 下载PDF
融合超分辨率和特征增强的轻量化遥感图像小目标检测 被引量:2
9
作者 杨雨迪 葛海波 +2 位作者 辛世澳 薛紫涵 袁昊 《计算机工程》 CAS CSCD 北大核心 2024年第11期284-296,共13页
为了应对遥感图像目标检测中小目标像素低、背景复杂、硬件资源有限等问题,提出一种融合超分辨率(SR)和特征增强的小目标检测模型。采用GhostNet网络中的Ghost卷积层替换YOLOv8网络中的传统卷积层Conv,在不影响检测精度的情况下降低网... 为了应对遥感图像目标检测中小目标像素低、背景复杂、硬件资源有限等问题,提出一种融合超分辨率(SR)和特征增强的小目标检测模型。采用GhostNet网络中的Ghost卷积层替换YOLOv8网络中的传统卷积层Conv,在不影响检测精度的情况下降低网络模型的参数量和计算量。在主干网络中,构建超分辨率辅助增强(SRAE)模块提升图像的分辨率和特征提取能力。利用三层特征融合(TFF)模块,获取主干网络较低层的空间特征,改善快速空间金字塔池化(SPPF)层特征空间提取不足的问题,提高小目标空间定位能力。设计自注意力信息转移(SAT)模块,在保证模型轻量化的同时增强小目标的语义信息和全局信息。实验结果表明,改进模型在DIOR数据集上实现了90.5%的mAP@0.5、15.1×10^(6)的参数量和30.3×10^(9)的每秒浮点运算次数(FLOPs),相比于其他模型在实现网络轻量化的同时提升了小目标检测精度。 展开更多
关键词 目标检测 超分辨率 遥感图像 yolov8网络 注意力机制 特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部