期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
基于改进YOLOv8-Seg模型的生物打印机产物均一性评估
1
作者 曹铭 段武峰 +2 位作者 马梦骁 艾凡荣 周奎 《浙江大学学报(工学版)》 北大核心 2025年第6期1277-1283,共7页
目前生物打印机依赖电子显微镜观测打印结果,并通过三点画圆法计算面积评价产物均一性,耗时久、主观性强、与真实情况差异大.为此,提出基于改进YOLOv8-Seg模型的打印产物轮廓识别.使用Adam作为优化器并调节原YOLOv8-Seg模型的训练参数,... 目前生物打印机依赖电子显微镜观测打印结果,并通过三点画圆法计算面积评价产物均一性,耗时久、主观性强、与真实情况差异大.为此,提出基于改进YOLOv8-Seg模型的打印产物轮廓识别.使用Adam作为优化器并调节原YOLOv8-Seg模型的训练参数,确保模型对打印产物识别的置信度水平大多高于0.94.训练得到的mAP50达到99.5%,mAP50-90达到98.4%.采集数据图片中事先放置的500μm的标度尺,实现对所识别轮廓面积的直接计算,同时结合识别轮廓与圆形相似度的算法,优化打印产物均一性的评估指标.优化后的算法所识别的轮廓与真实轮廓的差异性小于0.25%.对不同方法所获得的打印结果的轮廓面积进行变异系数CV处理与圆度分析,结果表明,当CV小于20%,圆度大于0.65时,可认为打印产物均一性良好. 展开更多
关键词 生物打印机 三点画圆法 均一性 yolov8-Seg模型 mAP50 mAP50-90 变异系数 圆度
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
2
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 yolov8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
基于改进YOLOv8n模型的辣椒病害检测方法 被引量:1
3
作者 李芳 危疆树 +2 位作者 王玉超 张尧 谢宇鑫 《江苏农业学报》 北大核心 2025年第2期323-334,共12页
为了解决辣椒病害检测速度慢,漏检率和误检率高的问题,本研究以YOLOv8n为基线模型,引入Adown下采样模块替代原模型骨干网络(Backbone)的卷积下采样层,引入SlimNeck模块将原模型颈部网络中的卷积层和特征聚合模块(C2f)替换为混合卷积模块... 为了解决辣椒病害检测速度慢,漏检率和误检率高的问题,本研究以YOLOv8n为基线模型,引入Adown下采样模块替代原模型骨干网络(Backbone)的卷积下采样层,引入SlimNeck模块将原模型颈部网络中的卷积层和特征聚合模块(C2f)替换为混合卷积模块(GSConv)和跨阶段部分网络(VoVGSCSP)模块,并利用辅助训练头Aux Head(Auxiliary head)融合原有的检测头,构建改进的YOLOv8n模型(YOLOv8n-ATA模型)。最后利用辣椒炭疽病、褐斑病、脐腐病和细菌性叶斑病等4种病害影像数据集对改进后的模型性能进行分析。结果表明,改进后模型的浮点计算量和模型大小比原YOLOv8n模型增加19.5%和10.2%,但模型对辣椒病害的识别精确率、平均精度均值mAP_(50)和mAP_(50∶95)分别提升2.6个百分点、2.9个百分点和2.9个百分点,同时每1 s传输帧数增加15.1%。因此,改进后的模型能够对辣椒病害进行有效识别,较好实现模型识别准确度与效率的平衡。 展开更多
关键词 辣椒病害 yolov8n模型 目标检测 Adown下采样模块 SlimNeck模块 Aux Head检测头
在线阅读 下载PDF
基于轻量化YOLOv8-FasterBlock模型的云南小粒咖啡生豆分级方法
4
作者 杨红欣 陈越 +6 位作者 裴国权 钱雪英 李沛瑶 朱才英 夏迁 刘自高 吴文斗 《食品科学》 北大核心 2025年第4期268-277,共10页
建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将... 建立基于轻量化YOLOv8-FasterBlock模型的小粒咖啡生豆分级方法。实验主要收集来自云南的一级、二级、三级以及缺陷小粒咖啡生豆共500 g作为研究对象,混合后采集相应RGB图像作为咖啡生豆分级的数据集。随后对YOLOv8n模型进行改进,重点将YOLOv8n模型中C2f模块的BottleneckBlock替换为FasterNet中的FasterBlock模块,改进后形成新的轻量化YOLOv8-FasterBlock模型。将该模型应用于实验中不同等级咖啡豆分级检测,结果显示,提出的YOLOv8-FasterBlock模型精确率、召回率和平均精度均值分别达到了98.4%、94.3%、97.4%,其检测平均时间为2.4 ms。在后续进行的一系列对比实验、消融实验、轻量化实验以及粘连豆实验,证明了YOLOv8-FasterBlock模型的优越性和结构有效性。YOLOv8-FasterBlock模型在降低模型复杂度的同时,提升了对小粒咖啡生豆的特征提取能力和推理速度,可实现咖啡豆分级快速检测。研究结果可为后续小粒咖啡生豆分级设备的视觉模块部署提供参考,也可以为其他农产品的分级提供理论支持。 展开更多
关键词 小粒咖啡 生豆 yolov8-FasterBlock模型 目标检测 分级
在线阅读 下载PDF
一种基于改进YOLOv8n-seg的轻量化茶树嫩芽的茶梗识别模型
5
作者 施武 袁伟皓 +1 位作者 杨梦道 许高建 《江苏农业学报》 北大核心 2025年第1期75-86,共12页
茶树嫩芽茶梗识别对实现茶叶采摘的自动化和智能化具有重要意义。然而,现有的目标检测算法检测茶树嫩芽茶梗存在精度较低、计算量大、模型体积庞大等问题,限制了其在终端设备上的部署。因此,本研究基于YOLOv8n-seg模型,提出一种轻量化... 茶树嫩芽茶梗识别对实现茶叶采摘的自动化和智能化具有重要意义。然而,现有的目标检测算法检测茶树嫩芽茶梗存在精度较低、计算量大、模型体积庞大等问题,限制了其在终端设备上的部署。因此,本研究基于YOLOv8n-seg模型,提出一种轻量化的茶树嫩芽茶梗识别模型YOLOv8n-seg-VLS,并在以下3个方面进行了改进:引入VanillaNet轻量化模块替代原有卷积层,以降低模型的复杂程度;在颈部引入大型可分离核注意力模块(LSKA),以降低存储量和计算资源消耗;将YOLOv8的损失函数从中心点与边界框的重叠联合(CIoU)替换为边界框自身形状与自身尺度之间的损失(Shape-IoU),从而提高边界框的定位精度。在采集的茶叶数据集上进行测试,结果表明,改进后获得的YOLOv8n-seg-VLS模型的平均精度值(mAP)方面表现较好,交并比阈值为0.50的平均精度值(mAP_(0.50))为94.02%,交并比阈值为0.50至0.95的平均精度值(mAP_(0.50∶0.95))为62.34%;模型的准确度(P)为90.08%,召回率(R)为89.96%;改进模型的每秒传输帧数(FPS)为245.20帧,模型的大小为3.92 MB,仅为YOLOv8n-seg大小的57.39%。研究结果为后续茶叶智能化采摘装备的研发提供了技术支持。 展开更多
关键词 图像识别 茶叶采摘 轻量化模型 yolov8n-seg VanillaNet
在线阅读 下载PDF
基于轻量化改进YOLOv8模型和边缘计算的玉米病虫害检测系统 被引量:1
6
作者 施杰 熊凯祥 +3 位作者 李志 陈立畅 唐秀英 杨琳琳 《江苏农业学报》 北大核心 2025年第2期313-322,共10页
为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入... 为实现玉米病虫害的原位准确检测与识别,本研究设计了一套基于边缘计算的玉米病虫害智能检测系统。该系统基于YOLOv8模型并进行改进,具体改进方法包括:采用高效视觉网络(EfficientViT)作为主干网络,以降低计算量;在特征融合网络中引入幻影卷积(GhostConv),进一步减轻计算负担;在C2f模块中引入空间通道重建卷积(SCConv),以增强特征提取性能;将损失函数替换为具有动态非单调聚焦机制的损失函数(WIoU),以提高模型的识别精度。同时,本研究设计了基于边缘计算的病虫害检测系统上位机、下位机架构,并将该轻量化模型部署到Jetson orin nano边缘计算设备上。系统采用Pyside6开发系统可视化界面,除具备识别与训练功能外,还集成了基于大模型技术的AI专家库,可以实现对病虫害的智能化诊断。通过自建的玉米病虫害数据集对改进模型YOLOv8-EGCW进行检验。结果表明,与原始模型YOLOv8m相比,改进模型YOLOv8-EGCW的精确度、召回率和平均精度均值分别提升了0.4个百分点、1.6个百分点和1.2个百分点,参数量和模型大小大幅减少,单张图像检测时间缩短。建立的玉米病虫害检测系统测试结果显示,准确率达到93.4%,检测速度达1 s 25帧。表明该系统能够满足边缘计算环境下玉米病虫害原位检测的需求。 展开更多
关键词 玉米 病虫害检测系统 yolov8模型 轻量化改进 边缘计算
在线阅读 下载PDF
基于YOLOv8n的梨树叶片病害检测模型
7
作者 黄政 张涛 +2 位作者 孔万仔 赵丹枫 魏泉苗 《湖南农业大学学报(自然科学版)》 北大核心 2025年第2期113-121,共9页
针对传统目标检测模型对自然场景下梨树叶片病害检测存在精度低、模型参数量大等问题,提出一种基于YOLOv8n的梨树叶片病害检测改进模型。首先,使用RepGhostNet改进主干网络,利用结构重参数化实现特征的隐式重用,在提升网络特征提取能力... 针对传统目标检测模型对自然场景下梨树叶片病害检测存在精度低、模型参数量大等问题,提出一种基于YOLOv8n的梨树叶片病害检测改进模型。首先,使用RepGhostNet改进主干网络,利用结构重参数化实现特征的隐式重用,在提升网络特征提取能力的同时使网络更加轻量化。其次,引入双层路由注意力机制,通过查询自适应的方式降低模型对不相关特征的关注,提高模型对关键信息的敏感性,增强网络的表征能力和特征融合能力。最后,使用Inner-SIoU损失函数优化边界框回归,加快模型收敛速度,提高识别精度。结果表明:改进后的模型能够有效对梨树叶片病害进行检测,在DiaMOSPlant数据集上对梨树叶片病害的检测平均精准度m AP@50达到0.901,相较于原模型提高了5.6%;而模型参数量仅为2.4×10^(6)个,计算量仅为7GFLOPs,相较于原模型分别降低了20.00%和13.58%。与SSD、Faster-RCNN、YOLOv5n、YOLOv8s等主流目标检测模型相比,改进的模型不仅平均精准度有所提高,而且参数量和计算量均减少。 展开更多
关键词 梨树叶片病害检测 yolov8n 模型轻量化 RepGhostNet 双层路由注意力机制
在线阅读 下载PDF
基于改进的LSN-YOLOv8模型和无人机遥感图像的水稻稻曲病检测方法
8
作者 杨玉青 朱德泉 +4 位作者 刘凯旋 严从宽 孟凡凯 唐七星 廖娟 《江苏农业学报》 北大核心 2025年第5期905-915,共11页
本研究针对无人机采集的水稻稻曲病图像中存在的背景复杂、病斑目标小且与背景表征相似等问题,构建了一种水稻稻曲病检测模型LSN-YOLOv8。该模型以YOLOv8模型为基本框架,在骨干网络中融入大选择性核网络(LSKNet),通过动态调整感受野范... 本研究针对无人机采集的水稻稻曲病图像中存在的背景复杂、病斑目标小且与背景表征相似等问题,构建了一种水稻稻曲病检测模型LSN-YOLOv8。该模型以YOLOv8模型为基本框架,在骨干网络中融入大选择性核网络(LSKNet),通过动态调整感受野范围增强模型对小目标的特征提取能力;在骨干网络中加入坐标注意力机制(CA)模块,将病斑空间位置信息与通道注意力相结合,增强模型对关键区域的关注度同时减少背景干扰;利用梯度加权类激活映射(Grad-CAM)技术实现检测过程的可视化分析,为模型决策提供直观解释。为验证模型性能,利用无人机拍摄不同发病时期、不同背景条件下的水稻稻曲病图像,构建水稻稻曲病数据集,用于模型训练与测试。试验结果表明,本研究提出的LSN-YOLOv8模型精准度、召回率和交并比阈值为0.50时的平均精度值均值(mAP_(50))分别为94.8%、87.3%和92.3%,均高于YOLOv5、YOLOv7、YOLOv8、Faster R-CNN模型等经典目标检测模型。梯度加权类激活映射(Grad-CAM)技术可视化分析结果表明,LSN-YOLOv8模型能够更准确地聚焦于图像中的病害区域。本研究提出的LSN-YOLOv8模型可为稻曲病监测、病害防治和水稻抗病性鉴定提供技术支持。 展开更多
关键词 稻曲病 病害识别 无人机 yolov8模型 大选择性核网络(LSKNet) 坐标注意力机制(CA)
在线阅读 下载PDF
图像预处理整合策略结合改进YOLOv8模型用于微藻种类识别
9
作者 宁静 钟月妍 +2 位作者 刘学英 谢丽霞 王童 《分析测试学报》 北大核心 2025年第6期1024-1033,共10页
为解决传统的微藻检测方法依赖于人工镜检、分析时间长且检测结果易受检测人员技术经验影响等问题,提出了一种图像预处理整合策略结合改进YOLOv8模型的深度学习方法用于微藻识别。采用高斯模糊、拉普拉斯算子和主成分分析多方法整合策... 为解决传统的微藻检测方法依赖于人工镜检、分析时间长且检测结果易受检测人员技术经验影响等问题,提出了一种图像预处理整合策略结合改进YOLOv8模型的深度学习方法用于微藻识别。采用高斯模糊、拉普拉斯算子和主成分分析多方法整合策略对微藻显微图像进行预处理。在改进模型中,引入SPD-Conv模块减少细粒度信息的丢失以提高低分辨率图像和小尺寸微藻的检测性能,采用Slim-neck结构减少参数数量和模型大小,同时加入SimSPPF加速模型收敛,提高运行效率。结果表明,多方法整合的预处理策略能够显著减少图像中的噪声,同时增强微藻轮廓清晰度。在相同条件下,改进YOLOv8模型的平均精度均值(mAP)达到92.2%,检测效率比原始YOLOv8模型提高了5.1%,且对于小尺寸微藻表现出更优的检测性能。相较于Faster-RCNN、SSD、RTDETR-l、YOLOv3、YOLOv5、YOLOv6和YOLOv7模型,改进YOLOv8模型的mAP分别提升了40.2%、6.8%、14.5%、1.2%、5.7%、4.7%和0.8%。该方法为开发微藻种类检测技术提供了有价值的参考。 展开更多
关键词 微藻识别 图像预处理 yolov8模型 深度学习
在线阅读 下载PDF
基于改进YOLOv8模型的树线接地故障识别
10
作者 王洪江 刘金圣 +3 位作者 赵宏 赵婷婷 代钦 高英才 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第1期113-119,共7页
为提升电力系统中树线接地故障检测的识别效果,提出一种改进YOLOv8模型。该模型通过插入SimAM注意力机制增强特征表示能力,采用GIoU损失函数提升边界框预测的准确性,提高模型在复杂环境下的故障识别性能。为验证改进YOLOv8模型的性能进... 为提升电力系统中树线接地故障检测的识别效果,提出一种改进YOLOv8模型。该模型通过插入SimAM注意力机制增强特征表示能力,采用GIoU损失函数提升边界框预测的准确性,提高模型在复杂环境下的故障识别性能。为验证改进YOLOv8模型的性能进行消融实验、SimAM注意力机制模块的插入位置变化实验、损失函数选择实验,以及与其他识别模型的对比实验。实验结果表明:改进YOLOv8模型的识别精确度、召回率、平均精度均最高。该模型有效提高了树线接地故障检测图像的识别精度,为输电线路的智能化运维提供技术支持。 展开更多
关键词 电力系统 树线接地故障 yolov8模型 SimAM注意力机制 GIoU损失函数
在线阅读 下载PDF
基于改进YOLOv8s模型的隧道火灾检测
11
作者 王春源 刘权捷 《中国安全科学学报》 北大核心 2025年第3期69-76,共8页
为准确高效地检测复杂环境隧道火灾,提出一种基于改进YOLOv8s的隧道火灾检测算法。首先,引入跨阶段部分变换器模块(CSP-PTB)重构主干网络结构,在降低计算复杂度的同时保持特征提取能力;其次,融入卷积注意力(CBAM)增强模型对关键区域的... 为准确高效地检测复杂环境隧道火灾,提出一种基于改进YOLOv8s的隧道火灾检测算法。首先,引入跨阶段部分变换器模块(CSP-PTB)重构主干网络结构,在降低计算复杂度的同时保持特征提取能力;其次,融入卷积注意力(CBAM)增强模型对关键区域的感知能力,提升特征表征的判别性;最后,采用归一化高斯瓦瑟斯坦距离(NWD)损失函数优化训练过程,有效解决小目标检测精度不足的问题。检测试验结果表明:改进后的YOLOv8s模型平均精度均值(mAP)为0.848,比原版YOLOv8s模型提升2%;召回率为0.812,较原模型大幅提升9.3%;同时模型计算量(GFLOPS)减少6.7%,实现性能提升与效率优化的双重目标。与主流目标检测模型比,改进模型的mAP较快速区域卷积神经网络(Faster R-CNN)、单发多框检测(SSD)和YOLOv5s分别提升7.3%、10.1%和4.2%。 展开更多
关键词 yolov8模型 隧道火灾检测 卷积神经网络(CNN) 卷积注意力(CBAM) 损失函数
在线阅读 下载PDF
基于改进YOLOv8模型的玉米叶斑病快速识别方法
12
作者 张露 吴雪莲 《湖北农业科学》 2025年第5期160-166,172,共8页
为了实现玉米叶斑病的快速识别,通过集成全局注意力机制(Global attention module,GAM)、Slim-Neck轻量化模块及Inner-CIoU损失函数,优化YOLOv8模型的玉米叶斑病检测性能。与YOLOv8模型相比,改进YOLOv8模型(GAM+Slim-Neck+Inner-CIoU)的... 为了实现玉米叶斑病的快速识别,通过集成全局注意力机制(Global attention module,GAM)、Slim-Neck轻量化模块及Inner-CIoU损失函数,优化YOLOv8模型的玉米叶斑病检测性能。与YOLOv8模型相比,改进YOLOv8模型(GAM+Slim-Neck+Inner-CIoU)的Precision、Recall、mAP@0.5和mAP@[0.5∶0.95]分别增加4.15%、5.51%、3.91%和11.35%,参数量和检测时间分别减少10.39%和3.42%。改进后的YOLOv8模型在Precision、Recall、mAP@0.5和mAP@[0.5∶0.95]方面普遍优于其他模型(YOLOv3、YOLOv5、YOLOv6及Faster R-CNN),同时在参数量和检测时间上也表现出显著的优势,兼具高效性与轻量化特点。改进后的YOLOv8模型能够更高效地捕获关键信息,充分融合多维度特征,合理分配计算资源,从而提升识别准确率。 展开更多
关键词 玉米 叶斑病 改进 yolov8模型 快速识别
在线阅读 下载PDF
基于改进YOLOv8模型的黄花菜花蕾识别研究
13
作者 霍静琦 崔婷婷 薛志璐 《湖北农业科学》 2025年第7期186-191,共6页
通过深度融合CSPNet与密集连接网络(DenseNet)构建CSPDenseNet骨干模块,将该模块集成到YOLOv8模型,替换主干网络末端的最后2个标准卷积模块,得到改进YOLOv8模型(Dense-YOLOv8)。结果表明,在简单背景、稀疏黄花菜(Hemerocallis citrina B... 通过深度融合CSPNet与密集连接网络(DenseNet)构建CSPDenseNet骨干模块,将该模块集成到YOLOv8模型,替换主干网络末端的最后2个标准卷积模块,得到改进YOLOv8模型(Dense-YOLOv8)。结果表明,在简单背景、稀疏黄花菜(Hemerocallis citrina Baroni)花蕾场景下,Dense-YOLOv8模型成功识别出全部成熟花蕾;在简单背景、密集黄花菜花蕾场景下,Dense-YOLOv8模型在花蕾检测任务中展现出优异的识别性能,但在处理紧密相邻目标时仍存在部分漏检现象;在复杂背景、密集黄花菜花蕾场景下,Dense-YOLOv8模型成功识别出全部成熟花蕾。Dense-YOLOv8模型的mAP、F1、识别速度、模型大小分别为90.75%、89%、53 f/s、217.68 MB;与YOLOv8模型、Faster R-CNN模型、YOLOv7相比,DenseYOLOv8模型在精简网络结构与参数的同时,显著提升了目标检测的精度与速度。 展开更多
关键词 改进yolov8模型 深度学习 黄花菜(Hemerocallis citrina Baroni) 花蕾 识别
在线阅读 下载PDF
基于YOLOv8改进模型的玉米作物病虫害检测方法
14
作者 张正伟 闫泽愿 张铭瑞 《农村科学实验》 2025年第10期72-74,共3页
玉米作为重要的粮食作物之一,其产量和质量直接关系到我国粮食安全和农业经济的稳定。然而,玉米常受到多种病虫害的侵袭,严重影响其产量和质量。因此,高效、准确地识别作物病虫害种类对于提升玉米产量和质量具有重要意义。该研究创新性... 玉米作为重要的粮食作物之一,其产量和质量直接关系到我国粮食安全和农业经济的稳定。然而,玉米常受到多种病虫害的侵袭,严重影响其产量和质量。因此,高效、准确地识别作物病虫害种类对于提升玉米产量和质量具有重要意义。该研究创新性地提出一种名为MDGYOLONet的玉米作物病虫害检测框架,该框架是对YOLOv8模型的进一步优化与拓展。MDGYOLONet通过在YOLOv8网络中引入全局注意力机制,以增强网络对图像中重要特征的关注度,获得更准确的特征表示。同时,在YOLOv8网络的Neck中增加了Multi-Dilated模块,以增加网络对不同尺度物体的感知能力,从而改善目标的检测性能。经过对比分析,MDGYOLONet对4种玉米病虫害的检测精确率为97.5%,召回率为96.8%,平均精度均值为97.3%,与模型消融试验的其他3组模型(YOLOv8+GAM、YOLOv8+Multi-Dilated、YOLOv8)相比,平均精度均值分别提升了0.5%、1.6%和0.8%,说明改进型的YOLOv8(MDGYOLONet)模型能够为玉米病虫害的图像识别提供技术支撑。 展开更多
关键词 玉米 病虫害检测 yolov8改进模型 注意力机制 图像识别
在线阅读 下载PDF
基于YOLOv8n轻量化的动火作业火花识别方法研究
15
作者 钟兴润 杨文欣 +3 位作者 李新宏 孟晓静 田晨斌 周明宇 《中国安全生产科学技术》 北大核心 2025年第6期30-36,共7页
为了满足动火作业火花识别的高精度、实时性、轻量化需求,提出1种基于YOLOv8n的算法—YOLOv8-SGMP,将初始模型的主干网络替换为轻量化的ShuffleNet V2网络,降低模型的计算复杂度和参数需求。采用GSConv模块构建Slim-Neck精简特征融合网... 为了满足动火作业火花识别的高精度、实时性、轻量化需求,提出1种基于YOLOv8n的算法—YOLOv8-SGMP,将初始模型的主干网络替换为轻量化的ShuffleNet V2网络,降低模型的计算复杂度和参数需求。采用GSConv模块构建Slim-Neck精简特征融合网络,降低计算复杂性、增强模型泛化能力、提高准确性和效率。更换MPDIoU损失函数,聚焦更高质量的边界框,提高模型检测精度并加快收敛速度。采用离线式通道剪枝方法,提高模型精度的同时平衡模型体积和计算量,进一步优化网络模型。研究结果表明:动火作业火花检测平均精度达93.1%,对比初始算法,计算量降低65.43%,参数量降低57.47%,模型大小仅有2.8 MB。研究结果可为识别动火作业火花和智能化安全管理提供参考。 展开更多
关键词 动火作业火花 yolov8n 轻量化 模型剪枝
在线阅读 下载PDF
基于YOLOv8n改进的水稻病害轻量化检测
16
作者 郭丽峰 黄俊杰 +5 位作者 吴禹竺 王思吉 王轶哲 包羽健 苏中滨 刘宏新 《农业工程学报》 北大核心 2025年第8期156-164,共9页
为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile blo... 为解决水稻病害检测中存在的小目标特征提取困难、复杂环境下检测精度不高的问题以及在边缘化设备上实现高效实时检测,该研究提出了一种轻量化水稻病害识别方法YOLOv8-DiDL。该方法通过引入倒残差移动模块(inverted residual mobile block,iRMB)增强小目标特征捕捉能力,采用变形卷积模块DCNv2(deformable convolutional networks)优化目标几何变化适应性,结合采样算子DySample(dynamic sample)算法提升复杂环境适应能力,并改进快速空间金字塔池化模块(spatial pyramid pooling fast,SPPF)为大核分离卷积注意力模块(large separable kernel attention,LSKA)增强多尺度特征融合。试验结果表明,改进的YOLOv8-DiDL模型准确率、召回率和平均精度均值分别为91.4%、83.5%、90.8%;与原始基础网络YOLOv8n相比分别提升7.0、0.5、2.5个百分点,模型权重降低9.7%,每秒浮点运算次数提升7.4%。该研究通过改进模型显著提高了水稻病害检测的精度和部署效率,为智能化农业的实时病害监测提供了技术基础。 展开更多
关键词 水稻 病害 目标检测 yolov8n改进模型 卷积神经网络 模型轻量化设计
在线阅读 下载PDF
基于改进YOLOv8算法的谷子田杂草检测 被引量:1
17
作者 王鑫淼 张正 +2 位作者 董晓威 王林烽 李瑞祥 《中国农机化学报》 北大核心 2025年第1期185-189,226,共6页
针对谷子田环境复杂、杂草种类众多、杂草分布密集的特点导致识别精度低的问题,提出一种基于YOLOv8的改进模型。通过加入CloFormer结构来减少YOLOv8算法计算量并提高识别精度,使用Global和Local的注意力与c2f模块进行融合,使用AttnConv... 针对谷子田环境复杂、杂草种类众多、杂草分布密集的特点导致识别精度低的问题,提出一种基于YOLOv8的改进模型。通过加入CloFormer结构来减少YOLOv8算法计算量并提高识别精度,使用Global和Local的注意力与c2f模块进行融合,使用AttnConv共享权重来整合局部信息,部署上下文感知权重来增强局部特征;为进一步提高识别精度,另外添加Gam注意力机制,与当前较先进的注意力机制进行对比试验,并与YOLO各系列模型进行对比试验。结果表明,YOLOv8-CG模型检测的平均精度均值为92.6%,比YOLOv5模型高4%。同时分析垄的种植密度不同对模型识别产生的影响,种植较为稀疏的10号垄比种植密集的2号垄精度高6.6%。 展开更多
关键词 杂草检测 谷子 yolov8 注意力机制 轻量级模型
在线阅读 下载PDF
基于改进YOLOv8的轻量化车辆检测网络 被引量:1
18
作者 陈梓延 王晓龙 +1 位作者 何迪 安国成 《计算机工程》 北大核心 2025年第5期314-325,共12页
现有的高精度车辆检测模型参数与计算量过高,无法在交通智能设备上良好运行,而轻量化的车辆检测模型精度普遍较低,不适用于实际任务。为此,提出一种改进YOLOv8的轻量化车辆检测网络,将主干网络替换为计算量和内存访问更小的FasterNet网... 现有的高精度车辆检测模型参数与计算量过高,无法在交通智能设备上良好运行,而轻量化的车辆检测模型精度普遍较低,不适用于实际任务。为此,提出一种改进YOLOv8的轻量化车辆检测网络,将主干网络替换为计算量和内存访问更小的FasterNet网络,并且将颈部的双向特征金字塔网络替换为加权双向特征金字塔网络(BiFPN),简化特征融合过程。同时,引入一种融合注意力机制的动态检测头,实现检测头和注意力的无冗余结合;此外,针对完全交并比(CIoU)在检测精度和收敛速度上的缺陷,提出一种尺度不变交并比(SIoU)结合归一化高斯Wasserstein距离(NWD)的回归损失算法。最后,为尽量减小模型对边缘设备的算力需求,进行基于幅值的层自适应稀疏化剪枝,进一步压缩模型大小。实验结果表明,提出的改进模型相较于原模型YOLOv8s,在精度上升1.5百分点的情况下,参数量降低78.9%,计算量下降67.4%,模型尺寸降低77.8%,达到了比较优秀的轻量化效果,具有很强的实用性。 展开更多
关键词 yolov8模型 车辆检测 轻量化 FasterNet网络 归一化高斯Wasserstein距离
在线阅读 下载PDF
基于改进YOLOv8n的轻量化辣椒花目标检测方法
19
作者 匡敏球 李旭 +5 位作者 陈熵 刘大为 向阳 刘峰 吴艳华 谢方平 《农业工程学报》 北大核心 2025年第12期198-207,共10页
辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-sca... 辣椒花目标检测是机械授粉的基础,为提高自然环境下辣椒花目标检测的精度,该研究提出了一种基于改进YOLOv8n的轻量化辣椒花目标检测模型YOLOv8n-Chili Flower。首先,在Neck层引入高效多尺度轻量化注意力机制模块EMA(efficient multi-scale attention),提升模型对辣椒花特征的识别能力,从而增强检测的灵敏度和准确性;其次,在模型的Backbone层将C2f模块替换为GSConv(group separable convolution)模块,减少不必要的信息冗余,防止特征信息丢失,在提高注意力机制模块效果的同时,降低了模型的复杂度;最后,采用WIoU(weighted intersection over union)损失函数替换CIoU(complete intersection over union)损失函数,优化回归损失的计算,并引入平滑项更准确地计算边界框的重叠度,实现模型更精确匹配辣椒花的形状和分布,从而加快了模型收敛并提高检测精度。结果表明,YOLOv8n-Chili Flower模型的召回率和平均精度均值分别为94.6%和95.9%,较原始YOLOv8n模型分别提升了0.9和0.6个百分点,浮点计算量、参数量和模型大小分别为7.2 G、2.39 M和5.0 MB,较原模型分别降低了12.20%、20.60%和20.63%。与YOLOv5s、YOLOv7tiny、YOLOv8s和YOLOv9主流模型相比,改进模型能够更好地平衡平均精度均值和轻量化,将改进模型部署至NVIDIA Jetson AGX Orin计算平台上开展真实场景测试,正确检测率和检测帧率分别为83.25%和99.02帧/s,具有较好的正确检测率和检测速度。该研究可为辣椒机械授粉的花朵实时检测和轻量化部署提供一定的技术支持。 展开更多
关键词 yolov8n 目标检测 辣椒花 EMA注意力机制 GSConv模块 WIoU损失函数 轻量化模型
在线阅读 下载PDF
基于改进YOLOv8n的手机屏幕瑕疵检测算法:PGS-YOLO
20
作者 周思瑜 徐慧英 +4 位作者 朱信忠 黄晓 盛轲 曹雨淇 陈晨 《计算机工程》 北大核心 2025年第5期326-339,共14页
手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出... 手机屏幕作为人机交互的主窗口,已成为影响用户体验和终端整体性能的重要因素。因此,市场对解决手机屏幕瑕疵的需求日益增长。为满足这一需求,针对在手机屏幕瑕疵检测过程中存在检测精度低、小目标瑕疵漏检率高与检测速度慢的情况,提出一种以YOLOv8n作为基准模型的PGS-YOLO算法。PGS-YOLO通过增加一个专门的微小目标检测头,并结合SeaAttention注意力模块,有效提升对小目标的探测能力;将骨干网络和特征融合网络分别融入PConv与GhostNetV2轻量化模块,在保证精度的同时降低模型的参数量,提高瑕疵检测的速度与效率。实验结果表明,在北京大学手机屏幕表面瑕疵数据集中,相较于YOLOv8n,PGS-YOLO算法的mAP@0.5提升了2.5百分点,mAP@0.5∶0.95提升了2.2百分点,在手机屏幕瑕疵检测过程中不仅能对大片的瑕疵做到精准检测,还能对小瑕疵保持一定的准确度。此外,检测性能优于YOLOv5n、YOLOv8s等大部分YOLO系列算法。同时,参数量仅为2.0×10^(6),小于YOLOv8n,满足工业场景对手机屏幕瑕疵检测的需求。 展开更多
关键词 yolov8n模型 手机屏幕瑕疵检测 小目标检测 部分卷积 GhostNetV2轻量化模块 挤压增强轴向注意力
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部