期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进的YOLOv8n海洋动物目标检测算法:DPSC-YOLO 被引量:1
1
作者 梁佳杰 徐慧英 +3 位作者 朱信忠 王舒梦 刘子洋 李琛 《计算机工程与科学》 北大核心 2025年第4期695-705,共11页
在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。... 在海洋复杂的环境中,由于图像拍摄模糊、背景复杂,导致基于深度学习的目标检测算法存在特征提取困难和目标漏检等问题,因此海洋目标检测算法需要更加高效且性能优越。为此提出了一种基于YOLOv8n改进的海洋动物目标检测算法:DPSC-YOLO。在主干网络中引入DCNv2模块,通过增强空间建模能力来适应对象的几何变化;在主干网络末端引入空间金字塔池化SPPFCSPC,在保持模型感知场不变的同时减少模型的计算量;在颈部网络增加F 2极小目标检测头,结合其余3个尺度,使用4个不同的感受野检测层提高小目标检测精度;在颈部网络的C2f模块中结合CoTAttention注意力机制更好地利用相邻键之间的上下文信息,并根据数据的特点动态调整注意力分配。实验结果表明,DPSC-YOLO目标检测算法与YOLOv8n相比mAP@0.5提升了1.1%,mAP@0.5:0.95提升了4.6%,同时仅有较少的参数量和计算量的增加,证明DPSC-YOLO更适合复杂海洋环境中的目标检测任务。 展开更多
关键词 yolov8 DCNv2 SPPFCSPC 上下文注意力机制 小目标检测头
在线阅读 下载PDF
轻量化改进型YOLOv8的多类别绝缘子缺陷检测
2
作者 薛阳 蔡畅 +1 位作者 卢秋红 徐笑 《高技术通讯》 北大核心 2025年第9期933-942,共10页
为推动输电线路智能化巡检模式,本文针对人机协同巡检模式下的图像差异大及干扰因素多等问题,提出一种轻量化改进型YOLOv8(you only look once version 8)的多类别绝缘子缺陷检测算法。首先在特征提取网络中融合可变形大核注意力的同时... 为推动输电线路智能化巡检模式,本文针对人机协同巡检模式下的图像差异大及干扰因素多等问题,提出一种轻量化改进型YOLOv8(you only look once version 8)的多类别绝缘子缺陷检测算法。首先在特征提取网络中融合可变形大核注意力的同时进行轻量化,提升网络对不同目标轮廓与尺寸的适用性;其次引入渐进的特征融合策略以改善不同层次特征间的语义差距,提高网络的检测精度;并设计轻量化非对称检测头,进一步减少参数冗余;最后改进边框损失函数有效降低由密集遮挡造成的漏检和误检数量。实验结果表明,本文算法相较于原算法检测精度提升了7.7%,参数量和计算量分别减少了26.4%和30.2%,并在密集、遮挡、多类别目标缺陷检测中的评价指标均领先于当前主流的几类目标检测算法,显著提高了复杂环境下的多类别绝缘子缺陷检测,实现了检测精度和速度的双重提升。 展开更多
关键词 智能巡检 缺陷检测 yolov8网络 特征融合 非对称检测头
在线阅读 下载PDF
基于改进YOLOv8的嵌入式道路裂缝检测算法 被引量:15
3
作者 耿焕同 刘振宇 +2 位作者 蒋骏 范子辰 李嘉兴 《计算机应用》 CSCD 北大核心 2024年第5期1613-1618,共6页
在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替... 在边缘端设备部署YOLOv8L模型进行道路裂缝检测可以实现较高的精度,但难以保证实时检测。针对此问题,提出一种可部署到边缘计算设备Jetson AGX Xavier上的基于改进YOLOv8模型的目标检测算法。首先,利用部分卷积设计Faster Block结构以替换YOLOv8 C2f模块中的Bottleneck结构,并将改进后的C2f模块记为C2f-Faster;其次,在YOLOv8主干网络中的每个C2f-Faster模块之后接一个SE(Squeeze-and-Excitation)通道注意力层,进一步提高检测的精度。在开源道路损害数据集RDD20(Road Damage Detection 20)上的实验结果表明:所提方法的平均F1得分为0.573,每秒检测帧数(FPS)为47,模型大小为55.5MB,相较于GRDDC2020(GlobalRoadDamageDetection Challenge 2020)的SOTA(State-Of-The-Art)模型,F1得分提高了0.8个百分点,FPS提高了291.7%,模型大小减小了41.8%,实现了在边缘设备上对道路裂缝实时且准确的检测。 展开更多
关键词 yolov8 目标检测 轻量化 注意力机制 道路裂缝
在线阅读 下载PDF
苹果在线分级的多尺度轻量化改进YOLOv8表面缺陷检测模型
4
作者 郭志明 肖海迪 +3 位作者 王陈 孙婵骏 江水泉 邹小波 《食品科学》 2025年第22期1-12,共12页
针对果园现场苹果分级存在的计算资源受限和表面缺陷尺度差异大的问题,本研究构建基于机器视觉的改进YOLOv8苹果表面缺陷识别模型,在提高苹果表面缺陷检测效率的同时保证检测准确率。采用自搭建的机器视觉系统采集5500张苹果样本的表面... 针对果园现场苹果分级存在的计算资源受限和表面缺陷尺度差异大的问题,本研究构建基于机器视觉的改进YOLOv8苹果表面缺陷识别模型,在提高苹果表面缺陷检测效率的同时保证检测准确率。采用自搭建的机器视觉系统采集5500张苹果样本的表面特征及缺陷图像,涵盖果柄、花萼的特征与黑点、腐烂、机械损伤、日灼、褐斑和裂纹6种常见表面缺陷以及1种环境杂物并完成特征标注。引入RepGhostNeXt和EffQAFPN算法结构,对YOLOv8(You Only Look Once version 8)检测模型的主干特征提取网络和特征金字塔进行改进。在此基础上,研究训练并比较了YOLOv8、YOLOv8n、YOLOv8+EffQAFPN、YOLOv8+Rep Ghost NeXt和YOLOv8+EffQAFPN+Rep Ghost NeXt5种模型,并重点对比模型在苹果表面瑕疵检测中的检测准确率和模型检测速度。研究结果表明,YOLOv8+EffQAFPN+RepGhostNeXt模型在综合检测性能上表现最佳,其整体识别准确率为94.9%,且保持了7.81帧/s的平均检测帧率。综上,该模型能够在计算资源有限的环境下高效完成苹果表面缺陷检测任务,为实现果园现场高效便捷的苹果分级提供技术支撑。 展开更多
关键词 机器视觉 苹果表面缺陷 yolov8 缺陷检测
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部