为推动输电线路智能化巡检模式,本文针对人机协同巡检模式下的图像差异大及干扰因素多等问题,提出一种轻量化改进型YOLOv8(you only look once version 8)的多类别绝缘子缺陷检测算法。首先在特征提取网络中融合可变形大核注意力的同时...为推动输电线路智能化巡检模式,本文针对人机协同巡检模式下的图像差异大及干扰因素多等问题,提出一种轻量化改进型YOLOv8(you only look once version 8)的多类别绝缘子缺陷检测算法。首先在特征提取网络中融合可变形大核注意力的同时进行轻量化,提升网络对不同目标轮廓与尺寸的适用性;其次引入渐进的特征融合策略以改善不同层次特征间的语义差距,提高网络的检测精度;并设计轻量化非对称检测头,进一步减少参数冗余;最后改进边框损失函数有效降低由密集遮挡造成的漏检和误检数量。实验结果表明,本文算法相较于原算法检测精度提升了7.7%,参数量和计算量分别减少了26.4%和30.2%,并在密集、遮挡、多类别目标缺陷检测中的评价指标均领先于当前主流的几类目标检测算法,显著提高了复杂环境下的多类别绝缘子缺陷检测,实现了检测精度和速度的双重提升。展开更多
针对果园现场苹果分级存在的计算资源受限和表面缺陷尺度差异大的问题,本研究构建基于机器视觉的改进YOLOv8苹果表面缺陷识别模型,在提高苹果表面缺陷检测效率的同时保证检测准确率。采用自搭建的机器视觉系统采集5500张苹果样本的表面...针对果园现场苹果分级存在的计算资源受限和表面缺陷尺度差异大的问题,本研究构建基于机器视觉的改进YOLOv8苹果表面缺陷识别模型,在提高苹果表面缺陷检测效率的同时保证检测准确率。采用自搭建的机器视觉系统采集5500张苹果样本的表面特征及缺陷图像,涵盖果柄、花萼的特征与黑点、腐烂、机械损伤、日灼、褐斑和裂纹6种常见表面缺陷以及1种环境杂物并完成特征标注。引入RepGhostNeXt和EffQAFPN算法结构,对YOLOv8(You Only Look Once version 8)检测模型的主干特征提取网络和特征金字塔进行改进。在此基础上,研究训练并比较了YOLOv8、YOLOv8n、YOLOv8+EffQAFPN、YOLOv8+Rep Ghost NeXt和YOLOv8+EffQAFPN+Rep Ghost NeXt5种模型,并重点对比模型在苹果表面瑕疵检测中的检测准确率和模型检测速度。研究结果表明,YOLOv8+EffQAFPN+RepGhostNeXt模型在综合检测性能上表现最佳,其整体识别准确率为94.9%,且保持了7.81帧/s的平均检测帧率。综上,该模型能够在计算资源有限的环境下高效完成苹果表面缺陷检测任务,为实现果园现场高效便捷的苹果分级提供技术支撑。展开更多
文摘为推动输电线路智能化巡检模式,本文针对人机协同巡检模式下的图像差异大及干扰因素多等问题,提出一种轻量化改进型YOLOv8(you only look once version 8)的多类别绝缘子缺陷检测算法。首先在特征提取网络中融合可变形大核注意力的同时进行轻量化,提升网络对不同目标轮廓与尺寸的适用性;其次引入渐进的特征融合策略以改善不同层次特征间的语义差距,提高网络的检测精度;并设计轻量化非对称检测头,进一步减少参数冗余;最后改进边框损失函数有效降低由密集遮挡造成的漏检和误检数量。实验结果表明,本文算法相较于原算法检测精度提升了7.7%,参数量和计算量分别减少了26.4%和30.2%,并在密集、遮挡、多类别目标缺陷检测中的评价指标均领先于当前主流的几类目标检测算法,显著提高了复杂环境下的多类别绝缘子缺陷检测,实现了检测精度和速度的双重提升。
文摘针对果园现场苹果分级存在的计算资源受限和表面缺陷尺度差异大的问题,本研究构建基于机器视觉的改进YOLOv8苹果表面缺陷识别模型,在提高苹果表面缺陷检测效率的同时保证检测准确率。采用自搭建的机器视觉系统采集5500张苹果样本的表面特征及缺陷图像,涵盖果柄、花萼的特征与黑点、腐烂、机械损伤、日灼、褐斑和裂纹6种常见表面缺陷以及1种环境杂物并完成特征标注。引入RepGhostNeXt和EffQAFPN算法结构,对YOLOv8(You Only Look Once version 8)检测模型的主干特征提取网络和特征金字塔进行改进。在此基础上,研究训练并比较了YOLOv8、YOLOv8n、YOLOv8+EffQAFPN、YOLOv8+Rep Ghost NeXt和YOLOv8+EffQAFPN+Rep Ghost NeXt5种模型,并重点对比模型在苹果表面瑕疵检测中的检测准确率和模型检测速度。研究结果表明,YOLOv8+EffQAFPN+RepGhostNeXt模型在综合检测性能上表现最佳,其整体识别准确率为94.9%,且保持了7.81帧/s的平均检测帧率。综上,该模型能够在计算资源有限的环境下高效完成苹果表面缺陷检测任务,为实现果园现场高效便捷的苹果分级提供技术支撑。