期刊文献+
共找到21篇文章
< 1 2 >
每页显示 20 50 100
基于改进YOLOv7-tiny的绝缘子缺陷检测网络
1
作者 韩兴宇 陈为真 《现代电子技术》 北大核心 2025年第16期105-112,共8页
现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特... 现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特征交互(AIFI)来处理高维特征,从而降低计算量;其次,使用双向加权路径特征金字塔网络(BiFPN)进行特征融合,并对下采样模块进行改进,增强网络的感知能力;最后,使用Focal-DIoU损失函数提高锚框质量。结果表明,与基线模型相比,IDD-Net的平均精度均值提高4.1%,精确率和召回率分别提高2.4%和6.5%,参数量和浮点运算量分别减少5.8%和2.3%,对于闪络缺陷的平均精度提高11.2%。由此说明所提方法参数量较小,性能更优异,鲁棒性更强。 展开更多
关键词 yolov7-tiny 绝缘子缺陷检测 基于注意力的尺度内特征交互 双向加权路径特征金字塔网络 MC下采样模块 轻量级网络
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法 被引量:1
2
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 yolov7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
基于通道剪枝的改进YOLOv7-tiny舰船识别算法 被引量:1
3
作者 张上 熊中越 王恒涛 《电光与控制》 北大核心 2025年第4期31-36,共6页
海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNe... 海上舰船目标识别是海洋监测的重要一环,也是世界各海岸地带国家国土安全的重要解决方案之一。针对SAR图像舰船目标检测存在识别精度低、训练模型大等问题,提出了一种基于通道剪枝的改进YOLOv7-tiny海上舰船识别算法。首先,采用MobileNetV3替代原有主干网络,以降低模型的计算量和体积,实现模型轻量化;其次,引入MPDIoU简化计算过程,优化模型的收敛性;最后,通过通道剪枝提高模型精度,同时平衡模型体积和计算量的降低幅度,进一步优化算法模型。实验结果表明,改进算法相对于YOLOv7-tiny,召回率提升了5.85个百分点,mAP提升了3.69个百分点,参数量减少了63.35%,计算量减少了70%。 展开更多
关键词 目标检测 yolov7-tiny SAR图像 轻量化模型 通道剪枝 损失函数
在线阅读 下载PDF
基于改进YOLOv7-tiny的道路病害检测算法 被引量:3
4
作者 谢国波 林松泽 +2 位作者 林志毅 吴陈锋 梁立辉 《图学学报》 CSCD 北大核心 2024年第5期987-997,共11页
针对目前道路病害检测方法参数量较大、小目标病害检测效果差且易出现误检、漏检的问题,提出一种基于改进YOLOv7-tiny的道路病害检测算法。引入深度可分离卷积(DSC)和无参注意力机制(SimAM)设计ELAN-SimAM-D结构,减少计算量和参数量以... 针对目前道路病害检测方法参数量较大、小目标病害检测效果差且易出现误检、漏检的问题,提出一种基于改进YOLOv7-tiny的道路病害检测算法。引入深度可分离卷积(DSC)和无参注意力机制(SimAM)设计ELAN-SimAM-D结构,减少计算量和参数量以实现轻量化,同时加强模型的特征提取和特征融合的能力;引入自适应指数加权池化和自适应融合设计SPPAda结构作为空间金字塔池化结构,增强道路病害信息的保留程度,降低病害的漏检;新增P2小目标网络层,加强对较小目标病害的检测能力,提高模型的检测精度;设计新的损失函数NWD-EIOU替换原CIOU损失函数,提高小目标定位的精度。实验结果表明,相较于原始的YOLOv7-tiny算法,改进后的YOLOv7-tiny算法在自建实验数据集下mAP@0.5达到83.14%,提升了3.50%,召回率上提升了4.96%,模型的参数量降低了33.84%,能够满足道路病害检测的需求。 展开更多
关键词 yolov7-tiny 道路病害检测 自适应指数加权池化 SimAM注意力机制 SPPAda结构 P2小目标网络
在线阅读 下载PDF
基于改进YOLOv7-Tiny的轻量化百香果检测方法 被引量:5
5
作者 涂智荣 凌海英 +3 位作者 李帼 陆声链 钱婷婷 陈明 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期79-90,共12页
在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂... 在果园中,准确且快速的果实检测是水果产量预测和自动化采摘等农业智能化应用的关键任务之一。针对目前目标检测模型参数量和计算量大,难以满足嵌入式设备实时性要求的问题,本文提出一种基于改进YOLOv7-Tiny的轻量化检测方法,用于复杂果园环境中百香果的检测。首先,在主干网络中使用全维动态卷积(ODConv),提高主干网络的特征提取能力,使平均精度均值(mAP)提升2个百分点;其次,为了减少颈部网络的参数量和计算量,融合GhostNet网络和MobileOne网络,提出GMConv轻量化模块,使模型参数量下降约30%,计算量下降约20%,FPS提高约50 frame/s。在百香果数据集上的实验结果表明,与YOLOv7-Tiny相比,改进后算法的参数量和计算量分别下降32.1%和25.4%,mAP提升2.6个百分点。在降低计算量和参数量的前提下,改进后算法进一步提高了检测精度,有利于在嵌入式设备中部署。 展开更多
关键词 目标检测 yolov7-tiny 百香果 轻量化网络 GMConv模块 ODConv
在线阅读 下载PDF
基于改进的YOLOv7小目标检测算法 被引量:1
6
作者 鞠伟强 曹立华 《计算机工程与设计》 北大核心 2025年第1期145-151,共7页
为提高小目标的检测精度,提出一种基于改进的YOLOv7的目标检测算法(SM-YOLOv7)。使用Swin Transformer(STR)模块替换主干特征提取网络中的E-ELEN模块,将SPPCSPC网络改进为SPPCSPF网络,在预测部分增加小目标检测头,设计MPC3模块避免网络... 为提高小目标的检测精度,提出一种基于改进的YOLOv7的目标检测算法(SM-YOLOv7)。使用Swin Transformer(STR)模块替换主干特征提取网络中的E-ELEN模块,将SPPCSPC网络改进为SPPCSPF网络,在预测部分增加小目标检测头,设计MPC3模块避免网络定位空间信息丢失。通过NWD代替YOLOv7网络模型中的CIoU损失函数,输出端采用SE-Net注意力机制。在Okahublot公开的FloW-Img数据集上验证,实验结果表明,SM-YOLOv7平均精度均值mAP为84.8%,相比基线YOLOv7网络模型提升了6.6%,检测性能优于原网络模型与传统经典目标检测网络模型。 展开更多
关键词 小目标检测 yolov7网络模型 损失函数 深度学习 机器视觉 SE-Net注意力机制 Swin Transformer
在线阅读 下载PDF
改进轻量化VTG-YOLOv7-tiny的钢材表面缺陷检测 被引量:10
7
作者 梁礼明 龙鹏威 +1 位作者 冯耀 卢宝贺 《光学精密工程》 EI CAS CSCD 北大核心 2024年第8期1227-1240,共14页
针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重... 针对钢材表面缺陷形态多样、结构复杂且存在检测目标漏检现象和算法参数量过大等问题,提出一种轻量化VTG-YOLOv7-tiny的钢材缺陷检测算法。该方法一是设计VoVGA-FPN网络,以减少信息传递过程中的丢失,增强网络特征融合能力;二是构建三重坐标注意力机制,提升模型对空间和通道信息的特征提取能力;三是引入鬼影混洗卷积,在提高精度的同时降低模型参数量和计算量;四是增加大目标检测层,改善特征图中部分缺陷占比较大,导致检测精度低的问题。在NEU-DET和Severstal钢材缺陷数据集进行实验验证,改进后算法与原模型相比,mAP分别提升5.7%和8.5%;参数量和计算量分别降低0.61 M和4.2 G;精确度和召回率分别提升7.1%,1.8%和8.9%,7.0%。实验结果表明,改进后的算法更好地平衡了检测精度和轻量化,为边缘终端设备提供了参考。 展开更多
关键词 缺陷检测 轻量化yolov7-tiny VoVGA-FPN网络 三重坐标注意力 鬼影混洗卷积
在线阅读 下载PDF
改进YOLOv7-tiny与D-S理论结合的实验室人员行为检测研究
8
作者 杨永亮 曹敏 +4 位作者 徐凌桦 王霄 杨靖 王涛 冯平平 《现代电子技术》 北大核心 2024年第19期153-160,共8页
针对目前实验室场景缺少对人员行为检测的方法,且主流算法精度低、误检率高的问题,文中提出一种改进YOLOv7-tiny的人员行为检测算法,并通过多源信息融合,提高人员行为在实际实验室场景中的识别准确率。首先,在检测算法主干网络引入Ghost... 针对目前实验室场景缺少对人员行为检测的方法,且主流算法精度低、误检率高的问题,文中提出一种改进YOLOv7-tiny的人员行为检测算法,并通过多源信息融合,提高人员行为在实际实验室场景中的识别准确率。首先,在检测算法主干网络引入GhostNetV2轻量化网络,进一步降低模型计算量和复杂度;其次,在颈部网络嵌入改进后的CBAM_E注意力模块,加强目标重要特征的提取;再次,在预测端使用SIoU替换原有的损失函数,减少角度因素和边界框回归精度的影响。检测结果表明,相较于YOLOv7-tiny,文中算法精度提升10.08%,模型参数量和复杂度分别下降36.45%和46.76%。最后通过将检测数据与传感器采集数据运用D-S证据理论进行信息融合后发现,人员不规范行为检测的误检率得到有效降低。结果表明,该方法可实现对实验室人员不规范行为的有效检测。 展开更多
关键词 实验室场景 人员行为 yolov7-tiny 轻量化网络 注意力模块 损失函数 D-S证据理论 信息融合
在线阅读 下载PDF
基于改进YOLOv7的肥城桃病虫害识别方法 被引量:1
9
作者 刘鹏 周鑫 +2 位作者 孙博 陈维康 王志军 《山东农业科学》 北大核心 2024年第8期150-157,共8页
为解决肥城桃病虫害特征小以及不同病斑表征相似导致的难以精准识别的问题,以山东省肥城市肥城桃种植基地为样本采集点,构建包含细菌穿孔病、褐斑穿孔病、潜隐黄化病、桃小食心虫、红颈天牛、流胶病6种桃病虫害的数据集;针对样本分布特... 为解决肥城桃病虫害特征小以及不同病斑表征相似导致的难以精准识别的问题,以山东省肥城市肥城桃种植基地为样本采集点,构建包含细菌穿孔病、褐斑穿孔病、潜隐黄化病、桃小食心虫、红颈天牛、流胶病6种桃病虫害的数据集;针对样本分布特点,引入Mixup、Cutout、高斯模糊等多种方法进行数据增强,以提升模型对小病斑特征的检测;以YOLOv7模型作为骨干网络,加入Ghost模块进行瘦身以降低模型冗余特征,构建基于CBAM注意力机制和加权双向特征金字塔网络(BiFPN)的多尺度神经网络模型,增强小病斑的多尺度融合,从而提高模型的泛化能力。经实验验证,改进后的模型对上述6种病虫害的识别精度均值(mAP)达到93.2%。表明改进后的模型能够实现对病虫害的有效识别,可为肥城桃病虫害的早期预警和防治提供一定的技术支撑。 展开更多
关键词 肥城桃 病虫害识别 yolov7模型 深度学习 卷积神经网络
在线阅读 下载PDF
改进GBS-YOLOv7t的钢材表面缺陷检测 被引量:7
10
作者 梁礼明 龙鹏威 +1 位作者 卢宝贺 李仁杰 《光电工程》 CAS CSCD 北大核心 2024年第5期54-65,共12页
针对钢材表面缺陷区域小目标居多,现有大部分方法无法均衡检测精度和速度的问题,提出一种基于YOLOv7-tiny的钢材表面缺陷检测算法(GBS-YOLOv7t)。该方法一是设计GAC-FPN网络,采用渐进和跨层的方式充分融合目标语义信息,以改善传统特征... 针对钢材表面缺陷区域小目标居多,现有大部分方法无法均衡检测精度和速度的问题,提出一种基于YOLOv7-tiny的钢材表面缺陷检测算法(GBS-YOLOv7t)。该方法一是设计GAC-FPN网络,采用渐进和跨层的方式充分融合目标语义信息,以改善传统特征金字塔中存在限制信息流问题;二是嵌入双层路由注意力模块,使模型具备动态查询和感知稀疏性能力,以提高对小目标的检测精度;三是引入SIoU损失函数,提升模型训练和推理能力,增强网络鲁棒性。最后在公共数据集NEU-DET进行实验验证,mAP和精确度分别为72.9%和69.9%,相较于YOLOv7-tiny原模型分别提升4.2%和8.5%;FPS达到104.1帧,具有较强实时性;与其他检测算法相比,GBS-YOLOv7t算法对钢材表面区域小目标的检测更有效,实验表明改进后的算法能够更好地均衡检测精度和速度。 展开更多
关键词 缺陷检测 yolov7-tiny GAC-FPN网络 双层路由注意力 SIoU
在线阅读 下载PDF
复杂环境下黄花菜识别的YOLOv7-MOCA模型 被引量:8
11
作者 靳红杰 马顾彧 +3 位作者 唐梦圆 陈婧美 张银萍 葛学峰 《农业工程学报》 EI CAS CSCD 北大核心 2023年第15期181-188,共8页
黄花菜是极具营养价值和经济效益的一种农作物,深受人们喜爱。目前黄花菜采摘大都是人工采摘,采摘效率低、人工成本较高,在设计黄花菜自动采摘机器人的过程中,复杂环境下黄花菜的目标识别是实现智能化采摘的核心问题。该研究建立了包含1... 黄花菜是极具营养价值和经济效益的一种农作物,深受人们喜爱。目前黄花菜采摘大都是人工采摘,采摘效率低、人工成本较高,在设计黄花菜自动采摘机器人的过程中,复杂环境下黄花菜的目标识别是实现智能化采摘的核心问题。该研究建立了包含12000幅黄花菜样本的数据库,比较了You Only Look Once(YOLOv7)、Faster Region Convolutional Neural Networks(Faster R-CNN)和Single Shot MultiBox Detector(SSD)三种模型的检测效果,提出一种基于改进YOLOv7目标检测算法的复杂环境下黄花菜识别的YOLOv7-MOCA模型,使用MobileOne网络作为主干特征提取网络,构建了一种轻量化网络模型,并在颈部网络中融合Coordinate Attention注意力机制改善对样本的检测效果。试验结果表明,YOLOv7-MOCA模型检测准确率为96.1%,召回率为96.6%,F1值为0.96,权重为10 MB,帧速率为58帧/s。较YOLOv7检测速度提高了26.1%,权重减少了86.7%,该研究所提出的YOLOv7-MOCA模型检测准确率等参数均大幅提升。该模型可以实现黄花菜的快速识别,模型权重小,识别速度快,为黄花菜智能化采摘设备研究提供技术支撑。 展开更多
关键词 识别 智能化 模型 黄花菜 复杂环境 yolov7 MobileOne网络 注意力机制
在线阅读 下载PDF
改进YOLOv7-Tiny农田环境下甜椒果实检测 被引量:14
12
作者 赵鹏飞 钱孟波 +2 位作者 周凯琪 单奕杰 吴浩宇 《计算机工程与应用》 CSCD 北大核心 2023年第15期329-340,共12页
针对在农田环境下甜椒果实的深度学习目标检测算法容易出现误检率较高、检测精度较低的问题,为提高农业生产管理系统以及农业机器人生产效率。基于YOLOv7-Tiny目标检测算法进行一系列改进。在YOLOv7-Tiny的主干中添加DBB(diverse branch... 针对在农田环境下甜椒果实的深度学习目标检测算法容易出现误检率较高、检测精度较低的问题,为提高农业生产管理系统以及农业机器人生产效率。基于YOLOv7-Tiny目标检测算法进行一系列改进。在YOLOv7-Tiny的主干中添加DBB(diverse branch block)模块;在三个输出特征层添加SimAM注意力机制;采用Bi-FPN特征融合机制,并增加跨通道特征融合,在P7层加入ASPP空洞空间卷积池化金字塔结构;采用数据集增强技术,对数据集图片进行扩充和图像处理,将800张甜椒果实数据集图片扩充至4800张。实验结果表明,在相同实验条件下改进YOLOv7-Tiny相较于YOLOv7-Tiny平均准确率(mAP)提高了2.21个百分点,视频检测速度32.82 FPS,改进YOLOv7-Tiny模型体积相较于YOLOv7-Tiny减小5.4 MB。改进YOLOv7-Tiny精度有明显提升,可实现快速、精准检测甜椒果实。 展开更多
关键词 甜椒检测 卷积神经网络 Bi-FPN yolov7-tiny
在线阅读 下载PDF
融合CBAM-YOLOv7模型的路面缺陷智能检测方法研究 被引量:8
13
作者 张艳君 沈平 +1 位作者 郭安辉 高博 《重庆理工大学学报(自然科学)》 北大核心 2023年第11期213-220,共8页
针对目前路面缺陷检测精度不高的问题,基于目前综合性能较强的YOLOv7模型进行改进,提出了融合卷积注意力模块的CBAM-YOLOv7模型。该模型通过重参数化、高效聚合、辅助训练等模块来加快模型的收敛过程,还通过融合卷积注意力机制来提升模... 针对目前路面缺陷检测精度不高的问题,基于目前综合性能较强的YOLOv7模型进行改进,提出了融合卷积注意力模块的CBAM-YOLOv7模型。该模型通过重参数化、高效聚合、辅助训练等模块来加快模型的收敛过程,还通过融合卷积注意力机制来提升模型的检测精度。面向路面缺陷多分类问题,在公开数据集上分别使用Faster R-CNN、YOLOv6、YOLOv7、CBAM-YOLOv7模型进行实验验证分析,利用mAP值、F1值、FPS值作为模型的精度与效率评价指标。实验结果显示:融合CBAM-YOLOv7的路面缺陷检测结果的mAP值和F1值分别能达到83.75%和67.8%,FPS值能达到51.22 Hz,相较于其他模型均有明显提高。 展开更多
关键词 路面缺陷检测 卷积神经网络 yolov7模型 CBAM-yolov7模型
在线阅读 下载PDF
基于改进YOLOv7-tiny的坦克车辆检测方法 被引量:3
14
作者 郑陆石 胡晓锋 +2 位作者 于伟国 赵东志 张鸿涛 《兵器装备工程学报》 CAS CSCD 北大核心 2023年第12期285-292,共8页
针对不同种类无人机航拍高度相差较大、图像分辨率不佳引起的坦克车辆检测算法效果不佳、速度慢等问题,提出一种基于改进YOLOv7-tiny的无人机视角坦克车辆检测算法。首先构建包含568幅图像、2132个目标的坦克车辆数据集。其次对YOLOv7-t... 针对不同种类无人机航拍高度相差较大、图像分辨率不佳引起的坦克车辆检测算法效果不佳、速度慢等问题,提出一种基于改进YOLOv7-tiny的无人机视角坦克车辆检测算法。首先构建包含568幅图像、2132个目标的坦克车辆数据集。其次对YOLOv7-tiny网络进行3个方面改进:提出了AC-ELAN网络结构并加入3D注意力机制,提高对目标信息的提取能力;引入SPPCSPC结构进一步扩大模型的感受野,同时能够有效减少训练学习时间;将损失函数计算方法替换为WIoU,聚焦于普通质量锚框,加速了模型收敛。最后实验结果表明,改进算法在自建数据集上表现优异,比传统的YOLOv7-tiny平均精度提升5.0%,在GPU设备上检测速度达到71帧/s,能够在无人机计算平台实现实时检测。 展开更多
关键词 目标检测 yolov7-tiny网络 非对称卷积 3D注意力机制 WIoU损失
在线阅读 下载PDF
基于改进YOLOv7的小目标检测 被引量:107
15
作者 戚玲珑 高建瓴 《计算机工程》 CAS CSCD 北大核心 2023年第1期41-48,共8页
目前的目标检测技术已趋于成熟,但小目标检测仍是研究的难点。针对目标检测过程中小目标检测更容易出现漏检等问题,提出一种改进的YOLOv7目标检测模型。结合特征分离合并思想,对YOLOv7网络模型中的MPConv模块进行改进,以减少网络特征处... 目前的目标检测技术已趋于成熟,但小目标检测仍是研究的难点。针对目标检测过程中小目标检测更容易出现漏检等问题,提出一种改进的YOLOv7目标检测模型。结合特征分离合并思想,对YOLOv7网络模型中的MPConv模块进行改进,以减少网络特征处理过程造成的特征损失,并通过实验确定放置改进MPConv模块的最佳位置。由于小目标检测过程中容易出现漏检的现象,利用ACmix注意力模块提高网络对小尺度目标的敏感度,降低噪声所带来的影响。在此基础上,使用SIoU替换原YOLOv7网络模型中的CIoU来优化损失函数,减少损失函数自由度,提高网络鲁棒性。在Okahublot公开的FloW-Img子数据集上进行实验,结果表明,对于数据集中的密集、小目标和超小目标三种情况的图片,改进后的YOLOv7网络模型相比原网络,漏检情况得到明显改善,且mAP达到71.1%,相比基线YOLOv7网络模型提升了4个百分点,检测效果优于原网络模型与传统经典目标检测网络模型。 展开更多
关键词 目标检测技术 小目标检测 yolov7网络模型 注意力模块 损失函数
在线阅读 下载PDF
基于改进视觉算法的自动驾驶风险预判模型 被引量:1
16
作者 赵红专 张继康 +5 位作者 潘佳雯 袁泉 许恩永 魏金占 周旦 刘承堃 《交通运输系统工程与信息》 EI CSCD 北大核心 2024年第5期79-90,139,共13页
针对传统车辆切入过近导致自动驾驶产生脱离的问题,本文提出一种YOLOV7-Tiny(You Only Look Once Version 7 Tiny)和SS-LSTM(Strong Sort Long Short Term Memory)的自动驾驶风险预判模型。首先,模型改进了视觉目标检测模型YOLOV7-Tiny... 针对传统车辆切入过近导致自动驾驶产生脱离的问题,本文提出一种YOLOV7-Tiny(You Only Look Once Version 7 Tiny)和SS-LSTM(Strong Sort Long Short Term Memory)的自动驾驶风险预判模型。首先,模型改进了视觉目标检测模型YOLOV7-Tiny,增加小目标检测层;其次,引入SimAM(A Simple,Parameter-Free Attention Module for Convolutional Neural Networks)无参注意力机制模块,优化训练损失函数,并对其目标车辆进行轨迹跟踪及预测,通过改进的多目标跟踪算法StrongSORT(Strong Simple Online and Realtime Tracking)的短期预测不断矫正LSTM(Long Short Term Memory)的长期预测,即建立SS-LSTM模型,并将预测的超车轨迹与智能网联车自身轨迹在同一时间纬度下进行拟合,得到传统车辆切入时的风险预判模型。实验结果表明,本文的自动驾驶风险预判方法有效预判了传统车辆切入时的风险。仿真实验表明,改进YOLOV7-Tiny相比于原有算法mAP(mean Average Precision)提高了2.3个百分点,FPS(Frames Per Second)为61.35 Hz,模型大小为12.6 MB,模型满足车载端轻量化的需求。实车实验表明,根据SS-LSTM模型所得到的风险预判准确率为90.3%。 展开更多
关键词 交通工程 风险预判 yolov7-tiny 自动驾驶 长短期记忆网络 轨迹预测
在线阅读 下载PDF
面向视障人群的室内视觉辅助算法的研究
17
作者 欧阳玉旋 张荣芬 +1 位作者 刘宇红 彭垚潘 《激光技术》 北大核心 2025年第2期166-174,共9页
为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效... 为了解决现有室内视觉辅助算法检测性能低、模型参数量大、不易部署于边缘设备等问题,对你只看一次(YOLO)网络YOLOv7-tiny进行改进,提出一种新的YOLOv7-ghost网络模型。针对模型参数量大的问题,引入幽灵瓶颈(GB)代替部分池化操作和高效层聚合网络(ELAN),大幅度降低模型参数量;构建了一个全新的高性能轻量化模块(即C2f-全局注意力模块),综合考虑全局和局部特征信息,更好地捕捉节点的上下文信息;然后引入快速空间金字塔池化和幽灵瓶颈(SPPF-GB)模块,对特征进行重组和压缩,以融合不同尺度的特征信息、增强特征的表达能力;最后在头部引入可变形卷积(DCN),增强感受野的表达能力,以捕获目标周围更细粒度的目标结构和背景信息。结果表明,改进后的模型参数量下降了20.33%,模型大小下降了18.70%,平均精度mAP@0.50和mAP@0.50~0.95分别提升了1.2%和3.3%。该网络模型在保证轻量化的同时,检测精度得到了大幅度的提升,更利于室内场景目标检测算法实际应用的部署。 展开更多
关键词 图像处理 轻量化 幽灵瓶颈模块 C2f-全局注意力模块 多尺度特征融合 可变形卷积 yolov7-tiny网络模型
在线阅读 下载PDF
轻量级红外小目标检测方法
18
作者 崔玉杰 张上 +1 位作者 陈永麟 许欢 《红外技术》 北大核心 2025年第9期1142-1151,共10页
针对红外图像背景复杂、信噪比低、检测目标尺寸小和亮度弱等检测难点,提出一种基于YOLOv7s的轻量级红外小目标检测算法ISTD-YOLO(Infrared Small Target Detection-You Only Look Once)。首先,对YOLOv7s网络结构进行轻量化重构,分别将... 针对红外图像背景复杂、信噪比低、检测目标尺寸小和亮度弱等检测难点,提出一种基于YOLOv7s的轻量级红外小目标检测算法ISTD-YOLO(Infrared Small Target Detection-You Only Look Once)。首先,对YOLOv7s网络结构进行轻量化重构,分别将特征提取网络和特征融合网络重新调整,设计出一种三尺度轻量级网络架构,提高对小目标的检测性能;然后,采用VoV-GSCSP来取代模型颈部网络的ELAN-W模块,以降低计算成本和网络结构的复杂性,提高推理速度;其次,在颈部网络中引入一种无参注意力机制,增强局部上下文信息的关联性,更准确地提取目标的定位;最后,选用归一化高斯Wasserstein距离(Normalized Gaussian Wasserstein Distance,NWD)优化常用的IoU指标,来计算预测框与真实框之间的重叠关系,增强对小目标的定位和检测精度。实验结果表明,ISTD-YOLO可以有效改善检测效果,对比基线模型,在HIT-UAV与IDSAT数据集上的检测精度分别提高8.52%与4.77%;模型体积仅有21.8 MB,参数量减少69.8%,计算量下降17.6%;相较于当下主流算法,ISTD-YOLO在各方面指标均得到有效改善,能够实现对红外小目标的高质量检测。 展开更多
关键词 目标检测 红外小目标 模型轻量化 yolov7s 注意力机制 轻量级Neck网络 NWD
在线阅读 下载PDF
基于多元感受野与EResPANet的草莓病害检测算法研究 被引量:1
19
作者 亢洁 刘佳 +3 位作者 王佳乐 夏宇 刘文波 李明辉 《陕西科技大学学报》 北大核心 2024年第6期190-198,共9页
针对草莓病害图像在检测时存在背景复杂、目标小导致难以被精确检测的问题,本文提出一种基于多元感受野与EResPANet的草莓病害检测算法.首先,该算法使用多元感受野特征标定网络替换YOLOv7-Tiny的主干网络,抑制冗余信息,解决主干网络特... 针对草莓病害图像在检测时存在背景复杂、目标小导致难以被精确检测的问题,本文提出一种基于多元感受野与EResPANet的草莓病害检测算法.首先,该算法使用多元感受野特征标定网络替换YOLOv7-Tiny的主干网络,抑制冗余信息,解决主干网络特征逐层提取时小目标病害丢失问题;最后,通过设计EResPANet网络,避免网络在深层特征提取时,目标信息被复杂背景干扰而导致无法检测的问题.实验结果表明,本文提出的方法相比YOLOv7-Tiny算法在mAP上提高了10.3%,证明本文算法可实现草莓各类病害的准确检测. 展开更多
关键词 草莓病害 目标检测 yolov7-tiny 多元感受野 EResPANet多尺度融合网络
在线阅读 下载PDF
海浪上下文信息补偿小目标检测算法
20
作者 李世宝 李晨 +2 位作者 李作志 王兆宇 贾泽昆 《现代电子技术》 北大核心 2024年第17期98-104,共7页
针对海上搜救图像中遇难人员在水面露出的面积小并且容易受到海浪反光、雨雾天气等恶劣环境影响,导致特征提取困难的问题,提出一种海浪上下文信息补偿小目标检测算法。首先,通过基于滑动窗口的图像预处理模块将图像进行裁剪,把关注点集... 针对海上搜救图像中遇难人员在水面露出的面积小并且容易受到海浪反光、雨雾天气等恶劣环境影响,导致特征提取困难的问题,提出一种海浪上下文信息补偿小目标检测算法。首先,通过基于滑动窗口的图像预处理模块将图像进行裁剪,把关注点集中在目标物体周围,并减少图像中的无关区域,降低了计算量并提高了准确率;其次,提出一种海浪上下文模块,首次通过分析海浪的运动方向和强度,提取海浪上下文信息来辅助海上搜救小目标检测,提高检测精度。在SeaDronesSeev1和SeaDronesSeev2数据集上的实验结果表明,所提算法平均精度分别达到了73.29%和87.81%,相比YOLOv7-tiny算法,平均精度分别提高了21.84%和6.5%。所提算法提高了海上搜救小目标的检测精度,提高了海上搜救的效率。 展开更多
关键词 卷积神经网络 目标检测 无人机 海上搜救 上下文信息 yolov7-tiny
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部