通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch...通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。展开更多
目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进...目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。展开更多
文摘通过机器视觉算法精确定位配电柜仪表的位置是实现仪表智能化识别的关键。针对配电柜背景复杂、字符尺度多样和相机像素低而导致的目标定位精度不高问题,提出一种面向配电柜字符识别的YOLOv7-MSBP目标定位算法。首先,设计Micro-branch检测分支,改进初始锚框铺设间隔,从而提高对小目标的检测精度。其次,引入双向特征金字塔网络(BiFPN)跨尺度融合不同层特征值,以改善因下采样造成的细节特征丢失、特征融合不充分的现象;同时,设计同步混合阈卷积注意力模块(Syn-CBAM),加权融合通道和空间注意力特征,以提升算法的特征提取能力;并且,在主干网络引入部分卷积(PConv)模块,以降低算法冗余和延迟,提高检测速度。最后,将YOLOv7-MSBP的定位结果送入Paddle OCR(Optical Character Recognition)模型识别字符。实验结果表明,YOLOv7-MSBP算法的平均精度均值(mAP)达到93.2%,与YOLOv7算法相比提高了4.3个百分点,可见所提算法能够快速准确定位识别配电柜字符,验证了所提算法的有效性。
文摘目前车牌检测技术快速发展,但在复杂场景下有效检测出车牌数据仍是研究的难点。针对这一问题提出基于改进YOLOv7(you only look once v7)的复杂场景下车牌检测方法。首先,提出一种轻量化自注意力主干特征提取网络,对YOLOv7的主干网络进行替换。此外,用全维动态卷积替换特征融合网络中的普通卷积,同时嵌入CA(coordinate attention)注意力模块,增强模型特征融合能力。在此基础上对原算法中损失函数进行替换,采用更加优秀的损失函数SIoU(SCYLLA intersection over union),提高检测效率。实验采用CCPD(Chinese city parking dataset)数据集,筛选出部分具有挑战性的复杂场景中的车牌图片。实验结果表明:改进后的YOLOv7算法检测速度有大幅提升,帧率从原有的81.9帧/s提升至120帧/s。同时准确率(m AP)达到95.1%,提升2.9百分点,权重模型大小为36.1 MB。可以做到对复杂场景下的车牌进行实时检测,满足轻量化要求,提升了检测速度和精度。