期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
基于改进YOLOv5的苹果轻量化检测算法
1
作者 王红君 刘紫宾 +1 位作者 赵辉 岳有军 《农机化研究》 北大核心 2025年第7期65-71,共7页
为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的... 为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的关键位置引入注意力机制,以提高算法对苹果不同特征的提取能力;最后,使用CIoU作为改进网络的损失函数,以提升模型的检测效果。试验结果表明:改进模型的检测精度为91.5%,相较于SSD、Faster R-CNN,检测精度分别提高了2.35%、3.07%,相比于YOLOv5s检测精度提高了8.20%,且模型大小约为YOLOv5s的1/3。 展开更多
关键词 苹果 检测算法 yolov5 轻量化 注意力机制
在线阅读 下载PDF
基于YOLOv5的倾斜视角下轻型红外小目标检测算法
2
作者 张飞 王剑 张岳松 《红外技术》 北大核心 2025年第2期217-225,共9页
针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来... 针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来重新设计特征提取网络,提高特征定位与计算效率,并搭配改进特征金字塔结构提取关键特征和提升模型稳定性。最后,颈部去掉下采样重新搭配SimAM形成新的特征融合结构,并重新设计检测头来适应本文数据集。对比实验显示,相对原始YOLOv5s模型,在自制和公共数据集上表现突出。m AP50达到94.5%,检测速度提高20.8%,模型大小压缩至10.1 MB,降低了30.3%,且GFLOPs下降了29.1%。这些改进实现了对目标的准确快速检测,有效地平衡了模型大小、检测精度和推理速度。 展开更多
关键词 图像处理 行人检测 红外场景 模型优化 yolov5算法
在线阅读 下载PDF
基于改进YOLOv5s的印刷电路板缺陷检测算法
3
作者 周著国 鲁玉军 吕利叶 《浙江大学学报(工学版)》 北大核心 2025年第8期1608-1616,共9页
针对印刷电路板(PCB)存在的缺陷目标较小不易被识别、误检率高以及模型尺寸较大不易部署等问题,提出基于改进YOLOv5s的缺陷检测方法.该方法使用基于密度分层聚类的K-means (HDBK-means)算法,重新聚类得到更适合PCB缺陷特点的锚框.使用... 针对印刷电路板(PCB)存在的缺陷目标较小不易被识别、误检率高以及模型尺寸较大不易部署等问题,提出基于改进YOLOv5s的缺陷检测方法.该方法使用基于密度分层聚类的K-means (HDBK-means)算法,重新聚类得到更适合PCB缺陷特点的锚框.使用经空间与通道重建卷积(SCConv)改进的重参数化非线性跨阶段部分高效层聚合网络(RepNCSPELAN)替换YOLOv5s主干中的特征提取模块,在保证精度的前提下,大大提高了模型推理速度.通过引入重参数化细节增强广义特征金字塔网络(RDEGFPN)进行特征融合,提升模型对于各个尺度缺陷目标的识别能力,减少计算资源消耗.使用动态上采样(DySample)对特征融合网络进行二次创新,形成广义动态特征融合金字塔网络(GDFPN),提高模型的轻量级与高效性,使得模型更容易部署.在公共PCB数据集上进行的对比实验表明,该算法将平均精度均值(m AP)提高了3.8%,将精度提高了2.9%,模型大小减少了26.9%,模型的检测速度达到138.1帧/s.将模型部署到RK3568平台上进行检测,满足了实时检测与嵌入式设备部署的要求. 展开更多
关键词 印刷电路板 yolov5s 聚类算法 特征提取 特征融合
在线阅读 下载PDF
基于YOLOv5算法的长江大保护水利工程项目多场景质量安全检测
4
作者 徐亮 陈旭 +1 位作者 张卓 郑向泉 《水利水电科技进展》 北大核心 2025年第2期82-89,共8页
为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现... 为解决长江大保护水利工程项目施工中质量安全隐患检测效率低、主观性强、易漏检等问题,通过分析项目多场景质量安全检测任务需求,明确了各类质量安全隐患的具体场景,利用YOLOv5算法进行了图像增强优化并搭建了智能识别算法架构,采用现场拍摄、网络爬虫技术及项目部内部数据资源,搜集并整理了上千张高质量照片,构建了质量安全图像数据集。在此基础上,通过融入区域检测功能,多场景质量安全检测系统能对指定的作业区域进行精准监测,可以有效地避免误检情况,提升检测效率与准确性。 展开更多
关键词 长江大保护 水利工程项目 质量安全检测 图像增强 多场景 yolov5算法
在线阅读 下载PDF
基于改进YOLOv5s的着装不规范检测算法研究 被引量:7
5
作者 李跃华 仲新 +1 位作者 姚章燕 胡彬 《图学学报》 CSCD 北大核心 2024年第3期433-445,共13页
针对餐饮后厨工作人员着装不规范,在复杂背景下采用现有算法检测精度低且易出现误检、漏检等问题,提出一种基于YOLOv5s的着装规范检测改进算法YOLOv5s-ESW。首先,在主干网络引入新型多尺度注意力机制改进C3模块,增强网络的特征提取能力... 针对餐饮后厨工作人员着装不规范,在复杂背景下采用现有算法检测精度低且易出现误检、漏检等问题,提出一种基于YOLOv5s的着装规范检测改进算法YOLOv5s-ESW。首先,在主干网络引入新型多尺度注意力机制改进C3模块,增强网络的特征提取能力;其次,在颈部网络中采用空间和通道重建卷积模块(SCConv)替换原始网络中的卷积模块(Conv),减少模型参数冗余,同时提升模型的精度;最后,在预测部分引入WIoU损失函数更换CIoU损失函数,提高模型泛化能力,加快收敛速度。将改进算法应用到自建餐饮后厨工作人员着装数据集中进行实验,实验表明,改进后的模型检测平均精度提升了4.1%,参数量减少了11.4%。该模型在提高了检测精度的同时降低了网络复杂度,能够满足餐饮后厨工作人员的着装规范检测的要求。 展开更多
关键词 着装规范检测 注意力机制 卷积 损失函数 yolov5s-esw算法
在线阅读 下载PDF
基于KMW-YOLOv5的PCB表面缺陷检测算法研究
6
作者 程瑶 石肖伊 +1 位作者 王玉菡 龚奥 《仪表技术与传感器》 北大核心 2025年第4期108-114,共7页
随着电路板制作越来越小型化、轻薄化,针对现有PCB缺陷检测算法存在检测性能差,容易出现漏检、误检等问题,文中提出基于KMW-YOLOv5的PCB缺陷检测算法。首先针对PCB微小缺陷,采用K-means++算法重新聚类生成更适合于目标数据集的锚框尺寸... 随着电路板制作越来越小型化、轻薄化,针对现有PCB缺陷检测算法存在检测性能差,容易出现漏检、误检等问题,文中提出基于KMW-YOLOv5的PCB缺陷检测算法。首先针对PCB微小缺陷,采用K-means++算法重新聚类生成更适合于目标数据集的锚框尺寸,提高模型对缺陷的检测效率。然后,对YOLOv5的特征融合层进行改进,加强PCB语义特征信息的融合,降低对PCB缺陷检测的漏检率以及误检率。最后,采用回归损失函数WIoU,提高网络对改进锚框的关注度、对PCB缺陷目标的定位能力。实验结果表明:KMW-YOLOv5算法在PCB Defect公开数据集测试中,其平均检测精度为98.3%,相较于YOLOv5提高了1.9%,优于其他PCB缺陷检测算法。 展开更多
关键词 PCB缺陷检测 yolov5 聚类算法 MobileViT
在线阅读 下载PDF
基于YOLOv5改进算法的屏蔽门夹人检测系统
7
作者 陈修忻 《城市轨道交通研究》 北大核心 2025年第S1期128-132,共5页
[目的]旨在通过目标检测方法,识别并减少车门夹人事件对城市轨道交通运营的影响,以提升车站的运营效率与安全性。基于YOLOv5改进算法设计屏蔽门夹人检测系统。[方法]基于现场收集含人不同姿态、角度图片共计5384张,将其按8∶2分为训练... [目的]旨在通过目标检测方法,识别并减少车门夹人事件对城市轨道交通运营的影响,以提升车站的运营效率与安全性。基于YOLOv5改进算法设计屏蔽门夹人检测系统。[方法]基于现场收集含人不同姿态、角度图片共计5384张,将其按8∶2分为训练集和测试集;对比YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l模型训练效果,选取YOLOv5m为基准模型并进行改进;在YOLOv5m模型的基础上引入自注意力机制CoTNet网络,并将Neck网络中的FPN(特征金字塔网络)+PAN(路径聚合网络)结构优化为BiFPN(加权双向特征金字塔网络)结构。[结果及结论]改进后的YOLOv5m算法比原算法在测试精度、召回率、平均精度上都有所提高。同时该系统可以实现对单张图片、单个视频、摄像头、视频流以及整个文件夹图片进行目标检测,并在识别到目标物后自动启动报警机制。 展开更多
关键词 城市轨道交通 屏蔽门 夹人检测 yolov5算法 CoTNet网络 加权双向特征金字塔
在线阅读 下载PDF
基于改进YOLOv5s算法的锂电池火灾识别模型
8
作者 张术琳 王澜凝 +1 位作者 文拙 鲁义 《消防科学与技术》 北大核心 2025年第8期1023-1028,共6页
锂电池火灾温度上升迅速,易引起周边物体燃烧,扩大火灾范围;同时,锂电池火灾会产生可燃气体,容易形成爆炸风险,加重火灾的危险性。因此,及时检测锂电池火灾以采取应急救援措施对阻断锂电池连锁事故具有重要意义。本研究基于YOLOv5s算法... 锂电池火灾温度上升迅速,易引起周边物体燃烧,扩大火灾范围;同时,锂电池火灾会产生可燃气体,容易形成爆炸风险,加重火灾的危险性。因此,及时检测锂电池火灾以采取应急救援措施对阻断锂电池连锁事故具有重要意义。本研究基于YOLOv5s算法,添加CA注意力机制增强模型的特征提取能力,并选用Mosaic-9数据增强算法提高模型的泛化能力,同时在模型中添加CIoU损失函数提升模型对小目标火焰的检测精度,建立基于改进YOLOv5s算法的锂电池火灾识别模型,并基于多干扰锂电池火灾数据集训练分析改进前后算法模型的损失函数和评价指标的鲁棒性。结果表明,改进模型的损失值收敛性更好,损失值较低;相比于原算法模型,改进算法模型的精确度提高了2.25%,召回率提升了2.11%,mAP增加了2.98%,F1分数提升了4.14%;改进算法模型在实现46帧/秒的检测速度的同时维持了准确的识别效果,本模型的建立对智能识别锂电池火灾的研究具有参考价值。 展开更多
关键词 锂电池火灾 火灾检测 yolov5s算法 CA注意力机制 Mosaic-9数据增强 CIoU损失函数
在线阅读 下载PDF
多尺度YOLOv5算法检测锂离子电池表面缺陷
9
作者 朱永平 程博 +1 位作者 熊聪 丁聪 《电池》 北大核心 2025年第1期71-77,共7页
针对软包装锂离子电池表面缺陷特征尺度不一、缺陷检测时小目标检测效果差的问题,提出基于改进YOLOv5的软包装锂离子电池表面缺陷检测算法。首先,将感受野注意力卷积(RFCAConv)融合到Bottleneck结构中,并替换主干网络中的卷积层(Conv),... 针对软包装锂离子电池表面缺陷特征尺度不一、缺陷检测时小目标检测效果差的问题,提出基于改进YOLOv5的软包装锂离子电池表面缺陷检测算法。首先,将感受野注意力卷积(RFCAConv)融合到Bottleneck结构中,并替换主干网络中的卷积层(Conv),通过有效提取感受野空间特征,提升模型整体性能;其次,将大型可分离核注意力(LSKA)融合到快速空间金字塔池化(SPPF)模块中,增强多尺度特征的提取能力;最后,将P2目标检测层融入路径聚合网络(PANet),提高模型对边缘细节信息的抓取能力,增强模型对小尺度缺陷特征的提取能力。改进后的YOLOv5s算法,均值平均精度为89.1%,较原模型提高4.8个百分点,每秒帧数达40.0,能够满足软包锂离子电池表面缺陷实时检测的需求。 展开更多
关键词 yolov5算法 锂离子电池 缺陷检测 感受野注意力卷积(RFCAConv) 可分离大核注意力 P2检测层
在线阅读 下载PDF
基于改进YOLOv5s的小目标检测算法 被引量:13
10
作者 贵向泉 秦庆松 孔令旺 《计算机工程与设计》 北大核心 2024年第4期1134-1140,共7页
针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目... 针对当前主流目标检测算法对图像中远距离小目标产生的漏检、误检等问题,提出一种改进YOLOv5s的小目标检测算法。在模型训练过程中,通过引入Focal-EIOU定位损失函数,加强边界框的定位精度;在骨干网络中,通过添加小目标检测层,提高小目标的检测精度;在Neck结构中,通过优化上采样算子和添加注意力机制,加强小目标的特征信息。实验结果表明,改进后的算法在VisDrone数据集上与YOLOv5s算法相比,mAP@small提高了3.2%,且检测速度满足实时性的要求,能够很好地应用于小目标检测任务中。 展开更多
关键词 yolov5s算法 小目标检测 损失函数 上采样算子 骨干网络 注意力机制 特征信息
在线阅读 下载PDF
基于改进YOLOv5s的道路裂缝检测算法 被引量:7
11
作者 任安虎 姜子渊 马晨浩 《激光杂志》 CAS 北大核心 2024年第4期88-94,共7页
为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global... 为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global Attention Mechanism, GAM)引入主干特征提取网络,在降低注意力复杂度的同时获得丰富的跨维度特征,增强了裂缝的识别能力;采用空间金字塔软池化网络(Spatial Pyramid Softpool, SPSF),通过Softpool池化保留多维语义以减少信息弥散,提高了边界框回归的准确性;在颈部特征增强网络,运用空洞深度可分离卷积(Atrous DSC)进行下采样,通过扩大感受野加强深层和浅层信息的聚合能力,提高裂缝识别的泛化性。经过在自制道路裂缝数据集上的实验,相较于YOLOv5s,改进算法的mAP提高2.2%,有效提升了道路裂缝检测的准确性和对不同背景下裂缝识别的泛化能力。 展开更多
关键词 道路裂缝检测 yolov5s算法 全局注意力机制 深度可分离卷积 Softpool池化
在线阅读 下载PDF
基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法 被引量:4
12
作者 胡丹丹 张忠婷 《智能系统学报》 CSCD 北大核心 2024年第3期653-660,共8页
在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以... 在复杂道路场景中检测车辆、行人、自行车等目标时,存在因多尺度目标及部分遮挡易造成漏检及误检等情况,提出一种基于改进YOLOv5s的面向自动驾驶场景的道路目标检测算法。首先,利用深度可分离卷积替换部分普通卷积,减少模型的参数量以提升检测速度。其次,在特征融合网络中引入基于感受野模块(receptive field block,RFB)改进的RFB-s,通过模仿人类视觉感知,增强特征图的有效感受野区域,提高网络特征表达能力及对目标特征的可辨识性。最后,使用自适应空间特征融合(adaptively spatial feature fusion,ASFF)方式以提升PANet对多尺度特征融合的效果。实验结果表明,在PASCAL VOC数据集上,所提算法检测平均精度均值相较于YOLOv5s提高1.71个百分点,达到84.01%,在满足自动驾驶汽车实时性要求的前提下,在一定程度上减少目标检测时的误检及漏检情况,有效提升模型在复杂驾驶场景下的检测性能。 展开更多
关键词 yolov5s 自动驾驶 目标检测算法 深度可分离卷积 感受野模块 自适应空间特征融合 PANet 多尺度特征融合
在线阅读 下载PDF
基于改进YOLOv5s算法的禁捕期长江渔船识别及应用研究
13
作者 崔秀芳 王认认 +2 位作者 林浩涛 夏霖波 韩沛霖 《海洋渔业》 CSCD 北大核心 2024年第3期371-380,共10页
长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合... 长江实行十年禁渔是长江生态环境修复的关键环节,针对禁渔期间长江非法捕捞渔船目标小、背景复杂、流动大等问题,提出了一种基于改进YOLOv5s的目标检测算法。该算法优化多尺度自适应锚框模块,采用改进的K-means++聚类算法,重新匹配适合长江船舶尺寸的锚框;使用轻量高效的坐标注意力(coordinate attention,CA)机制,提升模型关注目标通道信息特征的能力;采用SPPCSPPC(spatial pyramid pooling and context-aware spatial pyramid pooling combination)对特征图进行池化,提高小目标检测能力;通过构建长江船舶数据集训练得到最优权值模型。结果显示,改进后的模型在准确率、召回率、mAP0.5、mAP0.5∶0.9和原模型相比分别提高了1.5%、3.0%、2.4%、7.7%,且训练过程损失收敛更快,收敛值更低,能够准确快速识别出长江上的渔船目标。研究结果可为长江十年禁渔提供技术支持。 展开更多
关键词 目标检测 yolov5s 聚类算法 注意力机制 空间金字塔池化
在线阅读 下载PDF
基于改进YOLOv5算法和DeepSort算法的多目标检测和跟踪 被引量:5
14
作者 李志安 林道程 +2 位作者 姜晓凤 夏英杰 李金屏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第5期556-563,共8页
针对因受水面波纹、反光及目标外观特征相似而导致的游泳池中目标检测跟踪困难的问题,提出一种基于改进YOLOv5算法和DeepSort算法的多目标检测和跟踪方法;通过引入注意力机制改进YOLOv5算法,增强算法对目标特征的提取能力;将检测结果输... 针对因受水面波纹、反光及目标外观特征相似而导致的游泳池中目标检测跟踪困难的问题,提出一种基于改进YOLOv5算法和DeepSort算法的多目标检测和跟踪方法;通过引入注意力机制改进YOLOv5算法,增强算法对目标特征的提取能力;将检测结果输入到DeepSort算法中,在级联匹配中引入K邻域限制筛选目标检测框,减少因目标外观特征不明显引起的身份切换问题;利用匈牙利算法对检测框和预测框进行匹配,对未匹配成功的检测框采用距离交并比代替交并比进行二次匹配,提高DeepSort算法的跟踪性能;通过对比实验和消融实验验证所提出的多目标检测跟踪算法的性能。结果表明:改进的YOLOv5算法平均精准度提高2%,结合DeepSort算法跟踪检测,身份切换平均减少58次,多目标跟踪精确率为80.26%,比原始YOLOv5算法和Deepsort算法跟踪准确率提升了3.85%。 展开更多
关键词 目标检测 目标跟踪 yolov5算法 DeepSort算法 注意力机制 K邻域限制
在线阅读 下载PDF
基于改进YOLOv5s的CNN-Swin Transformer森林野生动物图像目标检测算法 被引量:1
15
作者 杨文翰 刘天宇 +2 位作者 周俊池 胡文武 蒋蘋 《林业科学》 EI CAS CSCD 北大核心 2024年第3期121-130,共10页
【目的】为提高野生动物在复杂森林环境中的检测精度,促进森林野生动物保护技术发展,提出一种基于YOLOv5s网络模型、针对陷阱相机所摄取森林野生动物图像的改进检测算法。【方法】以包含湖南壶瓶山国家级自然保护区几种典型森林野生动... 【目的】为提高野生动物在复杂森林环境中的检测精度,促进森林野生动物保护技术发展,提出一种基于YOLOv5s网络模型、针对陷阱相机所摄取森林野生动物图像的改进检测算法。【方法】以包含湖南壶瓶山国家级自然保护区几种典型森林野生动物在内的数据集为研究对象,首先,对真实标注框图像进行裁剪、归一化和缩放处理,随机将2~4张裁剪图像拼贴组成新的数据集元素,以丰富和增强数据集图像信息;其次,使用一种基于通道注意力思想的加权通道拼接方法,在通道拼接时引入权重改变通道数量,通过反向传播训练方法不断更新权重以增加重要特征信息的通道层数;接着,引入Swin Transformer模块与CNN网络相结合,为卷积神经网络特征提取加入自注意力机制,融合2种网络特征提取层的优势,提高特征提取的感受野;最后,选择更优的α-DIoU损失函数替代GIoU损失函数,针对边界框重叠面积和中心点距离造成的损失,引入新的几何因素惩罚项。【结果】在相同试验条件和数据集下,相比原YOLOv5s网络模型,改进算法极大提高检测的平均准确率和平均回归率,均值平均精度由74.1%提升至88.4%,获得14.3%的精度提升,同时也超过YOLOv3、YOLOXs、RetinaNet、Faster R-CNN等其他流行目标检测算法。【结论】针对陷阱相机所摄取森林野生动物图像背景与目标对比度低、遮挡重叠严重,致使检测误检率、漏检率高等问题,在检测算法中提出一系列改进措施,为我国森林野生动物的保护和数据获取提供一种新的可行性方案和思路。 展开更多
关键词 森林野生动物 检测算法 yolov5s Swin Transformer 网络融合
在线阅读 下载PDF
YOLOv5s-CBAM算法在福寿螺虫卵识别中的应用分析 被引量:1
16
作者 黄尧 何敬 +2 位作者 付饶 刘刚 林远杨 《中国农机化学报》 北大核心 2024年第6期223-228,共6页
福寿螺是我国重点关注的入侵物种,对农作物生长和生态环境会造成不利影响。及时获取福寿螺虫卵的分布信息,对于提前防治其入侵能起到有效的帮助作用。基于YOLOv5s基础网络模型,引入CBAM(Convolutional Block Attention Module)注意力机... 福寿螺是我国重点关注的入侵物种,对农作物生长和生态环境会造成不利影响。及时获取福寿螺虫卵的分布信息,对于提前防治其入侵能起到有效的帮助作用。基于YOLOv5s基础网络模型,引入CBAM(Convolutional Block Attention Module)注意力机制模块,以提高在复杂的自然环境下对福寿螺虫卵特征信息的提取,提出YOLOv5s-CBAM模型进行福寿螺虫卵识别方法。试验结果表明,引入CBAM的识别效果要好于引入CA和SE注意力模块。同时,引入CBAM的YOLOv5s-CBAM模型,识别效果优于原基础YOLOv5s模型,一定程度上能够克服倒影、植物遮挡等因素干扰。且平均精度均值达到83.8%,相比原模型提升2.5个百分点。基于深度学习的方法对复杂自然环境中的福寿螺虫卵进行识别是切实可行的,为福寿螺等入侵物种的监测防控提供新的思路。 展开更多
关键词 深度学习 yolov5s算法 注意力机制 福寿螺虫卵 图像识别
在线阅读 下载PDF
基于改进YOLOv5算法的水稻病害识别研究 被引量:2
17
作者 周思捷 刘天奇 陈天华 《中国农机化学报》 北大核心 2024年第8期246-253,共8页
针对传统深度学习算法难以在复杂环境下准确且高效地识别水稻病害问题,提出一种改进的YOLOv5算法,对水稻常见的白叶枯病、稻瘟病、东格鲁病和褐斑病的病斑进行检测。在原YOLOv5算法上结合混合域注意力机制进行特征校正,提高模型对水稻... 针对传统深度学习算法难以在复杂环境下准确且高效地识别水稻病害问题,提出一种改进的YOLOv5算法,对水稻常见的白叶枯病、稻瘟病、东格鲁病和褐斑病的病斑进行检测。在原YOLOv5算法上结合混合域注意力机制进行特征校正,提高模型对水稻叶片和病斑位置信息的定位能力。在损失函数部分将原CIoU_loss更换为SIoU_loss,弥补CIoU_loss未关注边界框和真实框角度偏移的问题。选用Soft-NMS筛选预测框,缓和传统NMS因不同病斑重叠区域过大而发生预测框误删造成的漏检情况。在消融试验中,改进算法在水稻病害识别任务中mAP达到0.884,比原YOLOv5算法提升2.9个百分点,在针对褐斑病病斑的识别上提升较大。证明改进的YOLOv5算法在水稻病害识别任务中的有效性。 展开更多
关键词 水稻病害 yolov5算法 注意力机制 目标检测
在线阅读 下载PDF
基于改进YOLOv5算法的实木板材表面缺陷检测 被引量:2
18
作者 沈胤熙 刘英 杨雨图 《林业机械与木工设备》 2024年第3期24-29,共6页
实木板材在世界范围内被广泛地应用于建筑、家居、艺术等领域,由于板材表面存在着影响其性能的不同种类的缺陷,而人工去除实木板材缺陷生产效率较低,质量无法保证。为了解决实木板材表面缺陷检测中存在的效率低下及过分依靠工人主观判... 实木板材在世界范围内被广泛地应用于建筑、家居、艺术等领域,由于板材表面存在着影响其性能的不同种类的缺陷,而人工去除实木板材缺陷生产效率较低,质量无法保证。为了解决实木板材表面缺陷检测中存在的效率低下及过分依靠工人主观判断的问题,将机器视觉和深度学习方法相结合,利用机器代替人对实木板材进行缺陷检测。具体使用彩色CCD相机采集了赤松和樟子松两种实木板材,裁剪成共计1500张大小为2048×2048像素的木材图片,图片中包含着活节、死节、髓心及裂缝缺陷。在YOLOv5结构基础上,受到了Vision Transformer的启发,在主干网络中使用了全局注意力模块来改进算法,并且针对实木板材的横向锯切方式修改了损失函数,以求在实木板材缺陷检测锯切这一任务中获得更好的效果。充分训练后在测试集上整体mAP达到0.974,召回率达到0.946,较未改进的YOLOv5分别提高了5.98%和9.36%,表现出一定优越性。 展开更多
关键词 实木板材 缺陷检测 yolov5算法 Vision Transformer 木材加工
在线阅读 下载PDF
改进Yolov5s的木材表面缺陷实时检测方法
19
作者 荣强 田启川 谭润 《林产工业》 北大核心 2025年第1期64-71,共8页
提出了一种改进Yolov5s的木材缺陷实时检测方法,该方法首先替换了Yolov5s网络中计算量开销占比较大的主干结构,实现了轻量化改进,提升了网络速度。其次,对网络颈部中的C3模块进行双通道注意力机制改进,有效提升了模型对缺陷部位的关注度... 提出了一种改进Yolov5s的木材缺陷实时检测方法,该方法首先替换了Yolov5s网络中计算量开销占比较大的主干结构,实现了轻量化改进,提升了网络速度。其次,对网络颈部中的C3模块进行双通道注意力机制改进,有效提升了模型对缺陷部位的关注度,减少了背景的干扰。成功构建了一种重颈部轻主干的轻量化模型LW-Yolov5。最后,通过构建损失函数,使用双重知识蒸馏策略对新模型进行训练。结果表明:新模型的计算量和参数量分别减少了52.8%和49.5%,CPU推理速度提高了31.6%,检测速度为20.4 FPS,GPU检测速度达到了137 FPS,模型体积仅为7.1 MB,更易于部署,且快速性优于当前主流的单阶段检测网络。在大规模木材缺陷数据集上的平均检测精度mAP为82.5%,检测精度较高。 展开更多
关键词 木材缺陷 缺陷检测 yolov5算法 轻量化网络 知识蒸馏
在线阅读 下载PDF
基于轻量化改进YOLOv5s的猕猴桃花期识别方法
20
作者 于强 石复习 《中国农机化学报》 北大核心 2025年第5期106-114,共9页
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLOv5s的猕猴桃花期轻量化检测模型(YOLOv5s_SGSC)。在YOLOv5s模型基础上,使用ShuffleNetv2和幻影卷积分别替换主干特征提取网络和颈网络的传统卷积,嵌入卷积注意力模块(C... 为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLOv5s的猕猴桃花期轻量化检测模型(YOLOv5s_SGSC)。在YOLOv5s模型基础上,使用ShuffleNetv2和幻影卷积分别替换主干特征提取网络和颈网络的传统卷积,嵌入卷积注意力模块(CBAM)提高网络对猕猴桃花朵的特征提取能力。结果表明,改进后模型的精确率和召回率为89.9%和89.7%;mAP值为94.5%,较改进前提高0.3%。模型体积为3.9 MB,为原YOLOv5s模型的27.7%,在嵌入式设备实时检测速度为11.8 fps,比原YOLOv5s模型快59.8%。将模型部署到嵌入式设备进行实地试验,改进后模型对距离镜头20~60 cm的猕猴桃花朵花期正确识别率达到85%以上,实时检测帧率在10 fps以上。可实现对猕猴桃花朵的花期分类,有助于推动授粉机器人的研发与应用。 展开更多
关键词 猕猴桃花朵 花期识别 嵌入式设备 yolov5s算法 轻量化
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部