期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于改进YOLOv4模型的番茄成熟度检测方法 被引量:7
1
作者 吕金锐 付燕 +2 位作者 倪美玉 曹为刚 杜子涛 《食品与机械》 CSCD 北大核心 2023年第9期134-139,共6页
目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。... 目的:解决现有番茄成熟度检测方法存在的检测精度低和模型参数量多等问题。方法:基于番茄图像采集系统,提出了一种改进的YOLOv4模型用于番茄成熟度自动检测。将轻量级网络MobileNetv3网络引入模型替换CSPDarkNet53网络,降低模型复杂度。在SPP模块中采用平均池化替代最大池化,提高算法对小目标的检测精度。在上采样过程中引入注意力机制CBAM增强深浅层特征融合能力,并通过试验验证所提模型的可行性。结果:与常规方法相比,试验方法在番茄成熟度检测中具有较高的检测mAP值和运行效率,且模型参数量较少,mAP值为92.50%,检测速度为37.1 FPS,模型参数量为48 M。结论:该番茄成熟度检测方法能有效降低模型参数和检测时间,具有较高的检测mAP值。 展开更多
关键词 番茄 成熟度 yolov4模型 MobileNetv3网络 注意力机制CBAM 平均池化
在线阅读 下载PDF
基于改进YOLOv4模型的群养生猪姿态检测 被引量:3
2
作者 李斌 刘东阳 +4 位作者 时国龙 慕京生 徐浩然 辜丽川 焦俊 《浙江农业学报》 CSCD 北大核心 2023年第1期215-225,共11页
为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2... 为了提升猪舍环境下生猪姿态检测的速度和性能,在YOLOv4模型的基础上提出一种改进的Mini_YOLOv4模型。首先,该模型将YOLOv4的特征提取网络改为轻量级的MobileNetV3网络结构,以降低模型参数量;其次,在检测网络的CBL_block1、CBL_block2模块中使用深度可分离卷积代替传统卷积,避免了复杂模型导致的内存不足和高延迟问题;最后,将原YOLOv4网络每个尺度的最后一层3×3卷积改为Inception网络结构,以提高模型在生猪姿态检测上的准确率。应用上述模型,对生猪的站立、坐立、腹卧、趴卧和侧卧5类姿态进行识别。结果显示,Mini_YOLOv4模型较YOLOv4模型在检测精度上提升了4.01百分点,在检测速度上提升近1倍,在保证识别精度的同时提升了实时性,可为生猪行为识别提供技术参考。 展开更多
关键词 yolov4模型 MobileNetV3网络 生猪姿态检测
在线阅读 下载PDF
一种轻量化YOLOv4的遥感影像桥梁目标检测算法 被引量:3
3
作者 余培东 王鑫 +2 位作者 江刚武 刘建辉 徐佰祺 《海洋测绘》 CSCD 北大核心 2022年第2期59-64,共6页
深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参... 深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参数化卷积层(DO_Conv),提出一种兼具精度和检测效率的轻量化模型。实验表明:比较原始YOLOv4算法,本文算法将模型权重降低55%,检测效率提升70%以上,证明了本文改进之处的有效性;在精度方面,本文算法在与SSD、RetinaNet、YOLOv3和CenterNet等经典目标检测算法比较中仍保持精度优势。与YOLOv4算法相比,本文算法在难度较低的检测任务中精度损失较低,但在检测难度较高的DOTA桥梁数据集中精度损失明显。 展开更多
关键词 桥梁目标检测 yolov4算法 MobileNetv3算法 深度超参数化卷积 轻量化模型
在线阅读 下载PDF
基于深度学习的绝缘子缺失检测方法研究 被引量:11
4
作者 乔路丽 蔺雨桐 +2 位作者 李静 管宽岐 张楠楠 《电网与清洁能源》 北大核心 2022年第10期44-50,共7页
绝缘子缺陷严重影响输电线路安全,航拍图像绝缘子缺失的有效识别是无人机线路巡检。提出一种轻量级网络的绝缘子缺失检测模型,使用轻量级网络MobileNetV3替换YOLOv4模型的CSPDarknet53网络。以分割性能和计算速度为判据,综合分析比较了Y... 绝缘子缺陷严重影响输电线路安全,航拍图像绝缘子缺失的有效识别是无人机线路巡检。提出一种轻量级网络的绝缘子缺失检测模型,使用轻量级网络MobileNetV3替换YOLOv4模型的CSPDarknet53网络。以分割性能和计算速度为判据,综合分析比较了YOLOv4模型和使用轻量型网络对其主干网络替换后的模型在绝缘子缺失检测上的性能,实验结果表明:筛选的YOLOv4-MobileNetV3轻量级网络绝缘子缺失检测模型能够准确定位图像中单、多目标绝缘子;改进后YOLOv4-MobileNetV3检测模型比原模型的体积减少了78%,FPS提升了4.85 f/s,而mAP仅降低0.6%。提出的绝缘子缺失检测方法能够满足无人机电力线路巡检的需求。 展开更多
关键词 绝缘子缺失检测 深度学习 轻量型网络 yolov4-mobilenetv3模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部