期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
基于FPGA的YOLOv4-tiny硬件优化与实现
1
作者 王凯 柏艳红 +1 位作者 李小松 李浩然 《组合机床与自动化加工技术》 北大核心 2025年第9期24-27,33,共5页
针对YOLOv4-tiny算法结构复杂、计算资源消耗大、参数众多,难以在FPGA上高效部署的问题,提出了一种软硬件结合的优化策略。将YOLOv4-tiny的骨干网络替换为Mobilenetv1网络,在加强特征提取网络中引入CBAM模块;对网络结构进行通道剪枝,对... 针对YOLOv4-tiny算法结构复杂、计算资源消耗大、参数众多,难以在FPGA上高效部署的问题,提出了一种软硬件结合的优化策略。将YOLOv4-tiny的骨干网络替换为Mobilenetv1网络,在加强特征提取网络中引入CBAM模块;对网络结构进行通道剪枝,对权重和偏置进行16位定点数量化。改进后的网络与原始YOLOv4-tiny相比参数量减少了40%,而识别准确率基本不变。使用高层次综合工具生成FPGA IP核,设计并行流水化的卷积结构并采用卷积层间分块操作,提高计算效率。将改进后算法在Zynq-7020FPGA芯片上实现,实验结果表明,改进后算法计算性能为43.4 GOP/s,是现有文献的1.6~4.1倍;能效比是现有的工作的4.8~10.7倍。所提策略能更高效地将算法部署在资源受限的FPGA平台上。 展开更多
关键词 yolov4-tiny 算法剪枝 算法量化 FPGA 并行流水结构
在线阅读 下载PDF
基于改进YOLOv4-tiny的安全标志检测
2
作者 赵重保 叶亭君 +4 位作者 费斐 康士明 赵雷 王瑶涵 宋泽阳 《中国安全生产科学技术》 北大核心 2025年第6期149-158,共10页
为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。... 为有效实现高效安全标志检测和对不安全行为预警,基于深度学习YOLOv4-tiny模型引入ECANet注意力机制,结合Soft-NMS算法提出1种用于检测安全标志的模型。模型中数据集包含2000个安全标志,其中训练集1620张、验证集180张和测试集200张。研究结果表明:该模型的检测精度达到97.76%,比YOLOv4-tiny和Faster RCNN卷积神经网络算法分别提高了7.55百分点和9.23百分点;改进的模型可避免YOLOv4-tiny和Faster RCNN卷积神经网络算法中出现的过拟合现象,泛化性能更好,在检测小目标区域和弱光条件下目标时,改进模型优势更加突出。研究结果可为施工场地安全标志的智能化监控与风险预警提供技术参考。 展开更多
关键词 安全标志检测 计算机视觉 yolov4-tiny 注意力机制 Soft-NMS算法
在线阅读 下载PDF
基于改进YOLOv4-Tiny算法的机械零件识别 被引量:2
3
作者 杨一帆 靳伍银 +1 位作者 薛文亮 王浩浩 《机械设计》 CSCD 北大核心 2024年第7期61-65,共5页
为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attentio... 为实现机械零件的精准快速识别,文中提出了一种基于改进的YOLOv4-Tiny算法的机械零件识别方法。该方法融合了注意力机制和K-means++聚类算法,采用CSPDarknet53-Tiny网络作为主干网络,并将卷积注意力机制模块(Convolution Block Attention Module, CBAM;Global Attention Mechanism, GAM)加在YOLOv4-Tiny主干网络与特征金字塔的连接处及其上采样处,在不影响主干网络的条件下,对每个通道的特征信息重新压缩并提取,过滤掉冗余特征信息,保留重要特征信息,并重新分配权重;再用K-means++聚类算法得到一组与机械零件图像数据集相匹配的先验框参数。试验结果表明,与传统的YOLOv4-Tiny算法相比,改进后的YOLOv4-Tiny算法在保证实时性的前提下,平均召回率和平均准确率分别达到99.43%和99.41%,可以准确检测并定位机械零件图像的位置。 展开更多
关键词 yolov4-Tiny算法 机械零件识别 CBAM GAM K-means++聚类算法
在线阅读 下载PDF
YOLOv4-Tiny的改进轻量级目标检测算法 被引量:28
4
作者 何湘杰 宋晓宁 《计算机科学与探索》 CSCD 北大核心 2024年第1期138-150,共13页
目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv... 目标检测是深度学习的重要分支领域,大量的边缘设备需要轻量级的目标检测算法,但现有的轻量级的通用目标检测算法存在检测精度低、检测速度慢的问题。针对这一问题,提出了一种基于注意力机制的YOLOv4-Tiny的改进算法。调整了原有的YOLOv4-Tiny算法的主干网络的结构,引入了ECA注意力机制,使用空洞卷积改进了传统的SPP结构为DC-SPP结构,并提出了CSATT注意力机制,与特征融合网络PAN形成CSATT-PAN的颈部网络,提高了网络的特征融合能力。提出的YOLOv4-CSATT算法和原始YOLOv4-Tiny算法相比,在检测速度基本持平的情况下,对于信息的敏感程度以及分类的准确程度有了明显的提高,在VOC数据集上精度提高了12.3个百分点,在COCO数据集上高出了6.4个百分点。在VOC数据集上,相比Faster RCNN、SSD、Efficientdet-d1、YOLOv3-Tiny、YOLOv4-MobileNetv1、YOLOv4-MobileNetv2、PP-YOLO算法在精度上分别高出3.3、5.5、6.3、17.4、10.3、0.9和0.6个百分点,在召回率上分别高出2.8、7.1、4.2、18.0、12.2、2.1和4.0个百分点,FPS达到94。通过提出CSATT注意力机制提高了模型对于空间的通道信息的捕捉能力,并结合ECA注意力机制和特征融合金字塔算法,提高了模型的特征融合的能力以及目标检测精度。 展开更多
关键词 目标检测 yolov4-Tiny算法 注意力机制 轻量级神经网络 特征融合
在线阅读 下载PDF
基于轻量级YOLOv4与KCF的复杂海面舰船目标识别
5
作者 金敏捷 童雨舟 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第11期1-10,共10页
对于远距离或小尺寸的舰船目标,采用轻量级YOLOv4模型可提供高效实时的特征提取,降低计算和存储资源的需求,这对于长时间海上任务或移动设备十分重要。并且单一尺度特征提取容易导致识别结果出现较大误差,因此提出基于轻量级YOLOv4与KC... 对于远距离或小尺寸的舰船目标,采用轻量级YOLOv4模型可提供高效实时的特征提取,降低计算和存储资源的需求,这对于长时间海上任务或移动设备十分重要。并且单一尺度特征提取容易导致识别结果出现较大误差,因此提出基于轻量级YOLOv4与KCF的复杂海面舰船目标识别方法。首先,对海面远小舰船图像进行双向均衡化处理,突出图像的细节。其次,设计一种更加轻量化的YOLOv4网络,从3个不同尺度提取舰船目标特征图,更快捷地捕捉舰船目标的位置和动态变化。最后,通过KCF算法结合相似度阈值,筛选出目标像素,构造舰船目标图像,完成舰船目标的识别。实验结果表明:所研究方法双向均衡化处理后图像质量得到提升,SNR最高达到35.4 dB,SSIM最大值为0.94;轻量化特征提取效果较为理想,特征提取的时间复杂度最低为1.2 s;相较于YOLOX-S算法、级联网络方法,所研究方法能够识别出全部的舰船目标,精准度达到了100%;所研究方法的最大帧率为49.6帧/s,相较于YOLOX-S算法、级联网络方法分别提升了84.40%与192.31%。因此,说明该方法能够更加精准地识别复杂海面舰船目标。 展开更多
关键词 轻量级yolov4网络 KCF算法 复杂海面 舰船目标识别 双向均衡化 特征图
在线阅读 下载PDF
基于卡尔曼滤波的杂波与噪声背景下红外小目标跟踪方法研究
6
作者 高兴媛 和铁行 《兵工自动化》 北大核心 2025年第8期63-67,77,共6页
为改进传统目标检测跟踪方法对特征的高层语义信息提取不够丰富,导致目标跟踪结果误差大的问题,提出基于卡尔曼滤波的复杂背景红外小目标跟踪方法。对获取到的弱小目标红外图像进行预处理,增强其目标的对比度,抑制背景对其的影响;通过YO... 为改进传统目标检测跟踪方法对特征的高层语义信息提取不够丰富,导致目标跟踪结果误差大的问题,提出基于卡尔曼滤波的复杂背景红外小目标跟踪方法。对获取到的弱小目标红外图像进行预处理,增强其目标的对比度,抑制背景对其的影响;通过YOLOv4网络提取红外弱小目标特征,将同一视觉特征的像素划入一个集合,搜索集合内可疑目标,在可疑目标中分割真实目标,完成红外弱小目标检测;采用卡尔曼滤波算法对红外弱小目标的运动轨迹进行追踪,并引入合适的损失函数以提高目标跟踪能力。研究结果表明:该方法的中心误差始终小于其他对比方法,最小达到0.53;重叠率始终高于其他对比方法,最高达到1.0,该方法优于对比方法,能提高红外图像小目标的跟踪效果,应用性能佳。 展开更多
关键词 DeepSORT 红外小目标 红外图像 yolov4网络 跟踪算法
在线阅读 下载PDF
基于改进YOLOv4算法的轮毂表面缺陷检测 被引量:11
7
作者 吴凤和 崔健新 +3 位作者 张宁 张志良 张会龙 郭保苏 《计量学报》 CSCD 北大核心 2022年第11期1404-1411,共8页
汽车轮毂加工过程中产生的表面缺陷严重影响整车的美观性及服役性能,针对人工检测效率低、漏检率高的问题,提出一种基于改进YOLOv4算法的轮毂表面缺陷检测方法。构建了轮毂缺陷数据集,其包含6种表面缺陷,由2346张4928×3264 pixel... 汽车轮毂加工过程中产生的表面缺陷严重影响整车的美观性及服役性能,针对人工检测效率低、漏检率高的问题,提出一种基于改进YOLOv4算法的轮毂表面缺陷检测方法。构建了轮毂缺陷数据集,其包含6种表面缺陷,由2346张4928×3264 pixel的图像组成;采用K-means方法进行先验框聚类,并针对YOLOv4算法在纤维、粘铝等小尺度缺陷上检测精度不足问题,在原网络Neck部分引入细化U型网络模块(TUM)和注意力机制,用于增强有效特征并抑制无效特征,强化多尺度特征提取与融合,改善特征处理过程中可能存在的小目标信息丢失问题;基于该数据集,训练并测试不同算法的缺陷检测性能并验证改进模块的有效性。结果表明,该方法大幅提升了粘铝等小尺寸缺陷的检测能力,缺陷检测平均精度达到85.8%,与多种算法相比较检测精度最高。 展开更多
关键词 计量学 轮毂 缺陷检测 改进yolov4算法 细化U型网络
在线阅读 下载PDF
基于改进YOLOv4算法的小型多旋翼无人机目标检测 被引量:4
8
作者 王磊 张启亮 翁明善 《探测与控制学报》 CSCD 北大核心 2022年第5期125-131,共7页
针对基于传统恒虚警概率检测算法的多输入多输出雷达在强地杂波背景下对于小型多旋翼无人机目标检测能力急剧下降的问题,引入了光学图像处理领域的YOLOv4目标检测算法,并在原算法的基础上加入SE模块,形成SE-YOLOv4算法。通过对雷达一维... 针对基于传统恒虚警概率检测算法的多输入多输出雷达在强地杂波背景下对于小型多旋翼无人机目标检测能力急剧下降的问题,引入了光学图像处理领域的YOLOv4目标检测算法,并在原算法的基础上加入SE模块,形成SE-YOLOv4算法。通过对雷达一维原始回波信号进行处理,获得目标回波信号在距离多普勒域能量分布的二维数据矩阵,形成特征明显的二维距离多普勒谱图,进行标注后构建数据集,模型训练完成后,在测试集上对模型的检测性能进行评估。实验结果表明SE-YOLOv4算法的检测性能优于传统的CFAR算法。 展开更多
关键词 多旋翼无人机 恒虚警概率检测 yolov4算法
在线阅读 下载PDF
融合Camshift与YOLOv4车辆检测算法 被引量:8
9
作者 胡习之 魏征 周文超 《机床与液压》 北大核心 2021年第11期70-74,共5页
作为one-stage代表作的YOLO系列最新算法,YOLOv4在检测速度和精度相比于YOLOv3均有提升,但是YOLOv4在视频流的检测速度上仍有提升的空间。提出一种融合Camshift和YOLOv4的车辆目标检测算法。算法的流程为:首先计算图像的差异值哈希值,... 作为one-stage代表作的YOLO系列最新算法,YOLOv4在检测速度和精度相比于YOLOv3均有提升,但是YOLOv4在视频流的检测速度上仍有提升的空间。提出一种融合Camshift和YOLOv4的车辆目标检测算法。算法的流程为:首先计算图像的差异值哈希值,然后利用哈希值来判断当前帧图像与上一帧图像的相似度,当相似度小于阈值,则交给YOLOv4算法进行检测,并将检测结果传给Camshift作为其初始化跟踪窗口;当相似度大于阈值,则由Camshift算法来进行跟踪。最后在实际道路上采集的数据进行算法检测,检测结果表明融合算法的有效性。 展开更多
关键词 yolov4算法 CAMSHIFT算法 差异值哈希算法 算法融合
在线阅读 下载PDF
基于深度学习的矿井视频流异常检测算法研究
10
作者 索智文 丁剑明 +2 位作者 屈波 张兰峰 申茂良 《中国安全生产科学技术》 北大核心 2025年第3期133-140,共8页
为了探究矿井复杂环境中视频流检测精度问题,提出1种基于YOLOv4深度优化的复杂环境视频流异常检测算法,增设SE模块提升特征提取效率,改进SPP、PANet模块优化异常检测能力;提取矿井现场真实数据,对数据集中4500多张异常行为进行模型训练... 为了探究矿井复杂环境中视频流检测精度问题,提出1种基于YOLOv4深度优化的复杂环境视频流异常检测算法,增设SE模块提升特征提取效率,改进SPP、PANet模块优化异常检测能力;提取矿井现场真实数据,对数据集中4500多张异常行为进行模型训练,采用深度优化的YOLOv4算法进行识别,标注出视频异常行为。研究结果表明:相较于传统的YOLOv4算法,深度优化后的模型平均精确率均值(MAP)为98.02%,MAP提升16.6百分点,每秒传输帧数(FPS)提高至28.56。研究结果可为优化矿井复杂环境下视频流检测精度提供思路和方法。 展开更多
关键词 yolov4算法 视频监控 视频流异常检测 MAP 矿山智能化
在线阅读 下载PDF
一种轻量化YOLOv4的遥感影像桥梁目标检测算法 被引量:4
11
作者 余培东 王鑫 +2 位作者 江刚武 刘建辉 徐佰祺 《海洋测绘》 CSCD 北大核心 2022年第2期59-64,共6页
深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参... 深度学习技术发展迅速,在目标检测中表现出良好的适应性。针对YOLOv4算法在遥感影像桥梁目标检测任务中的检测效率较低和模型轻量化不足问题,使用轻量化的MobileNetv3骨干网络替换原始CSPDarkNet53骨干网络,将传统卷积层替换为深度超参数化卷积层(DO_Conv),提出一种兼具精度和检测效率的轻量化模型。实验表明:比较原始YOLOv4算法,本文算法将模型权重降低55%,检测效率提升70%以上,证明了本文改进之处的有效性;在精度方面,本文算法在与SSD、RetinaNet、YOLOv3和CenterNet等经典目标检测算法比较中仍保持精度优势。与YOLOv4算法相比,本文算法在难度较低的检测任务中精度损失较低,但在检测难度较高的DOTA桥梁数据集中精度损失明显。 展开更多
关键词 桥梁目标检测 yolov4算法 MobileNetv3算法 深度超参数化卷积 轻量化模型
在线阅读 下载PDF
基于改进YOLOv4的2021年海地7.2级地震震后滑坡识别 被引量:7
12
作者 付饶 何敬 刘刚 《地震研究》 CSCD 北大核心 2023年第2期300-307,共8页
以国产高分二号影像为数据源,利用改进的YOLOv4算法对2021年海地7.2级地震诱发的滑坡进行识别。为提升模型的识别效率,用MobileNetv3替换了YOLOv4的骨干网络CSPDarknet53,并用深度可分离卷积替代YOLOv4中的普通卷积,优化了模型参数和网... 以国产高分二号影像为数据源,利用改进的YOLOv4算法对2021年海地7.2级地震诱发的滑坡进行识别。为提升模型的识别效率,用MobileNetv3替换了YOLOv4的骨干网络CSPDarknet53,并用深度可分离卷积替代YOLOv4中的普通卷积,优化了模型参数和网络结构。结果表明:改进后的YOLOv4算法目标识别精度达到91.37%,比普通YOLOv4检测速度提高了6.19 f/s,精度提高了5.24%,模型参数大小减少了80%。改进后的方法对滑坡的检测精度高于原YOLOv4算法,得到的滑坡位置更为准确,具有轻量化和实时性更高的优势,可为应急救援和灾情评估提供更加可靠的数据。 展开更多
关键词 yolov4 海地地震 滑坡识别 高分影像
在线阅读 下载PDF
基于YOLOv4网络模型的临时道路识别算法 被引量:2
13
作者 王浩东 王立勇 +3 位作者 苏清华 谢敏 王超 丁炳超 《广西大学学报(自然科学版)》 CAS 北大核心 2022年第3期712-722,共11页
针对自动驾驶车辆不能准确识别由交通锥桶标识的临时道路问题,提出一种融合彩色相机和深度相机数据的临时道路检测算法;使用一台四目相机实时采集环境的色彩和深度信息,通过YOLOv4模型实时检测彩色和深度图像中的交通锥桶,根据边界框的... 针对自动驾驶车辆不能准确识别由交通锥桶标识的临时道路问题,提出一种融合彩色相机和深度相机数据的临时道路检测算法;使用一台四目相机实时采集环境的色彩和深度信息,通过YOLOv4模型实时检测彩色和深度图像中的交通锥桶,根据边界框的欧氏距离对二者结果进行融合,最终规划出车辆在临时道路中的运动轨迹。实验结果表明,该算法能够快速、准确地识别各色交通锥桶及其位置信息,检测交通锥桶的平均精度分别为94.25%、95.16%和91.03%,平均单帧彩色图像处理时间为36.34 ms。车辆在临时道路中的运动轨迹规划也符合预期,能够辅助车辆顺利驶出。 展开更多
关键词 目标检测 yolov4算法 立体视觉 交通锥桶 自动驾驶
在线阅读 下载PDF
基于YOLOv4和改进分水岭算法的绝缘子爆裂检测定位研究 被引量:27
14
作者 刘悦 黄新波 《电网与清洁能源》 北大核心 2021年第7期51-57,共7页
近年来,航拍巡检代替人工成为了输电线路电力巡检的主要方式,而输电线路上绝缘子的完整性直接影响其供电可靠性。在复杂背景的干扰下,传统的图片处理方法往往对主体识别能力低下。针对这一问题,该文提出了一种基于YOLOv4的深度学习并结... 近年来,航拍巡检代替人工成为了输电线路电力巡检的主要方式,而输电线路上绝缘子的完整性直接影响其供电可靠性。在复杂背景的干扰下,传统的图片处理方法往往对主体识别能力低下。针对这一问题,该文提出了一种基于YOLOv4的深度学习并结合改进的分水岭算法,对航拍绝缘子图像精确识别及缺陷检测的问题进行了研究。首先利用YOLOv4对绝缘子进行精准的识别与定位,有效弥补了传统方法在复杂背景下识别能力低下的不足;再结合改进分水岭算法对绝缘子自爆位置进行识别,该方法可以快速地识别出绝缘子主体和缺陷位置。 展开更多
关键词 yolov4 分水岭算法 绝缘子故障 图像处理
在线阅读 下载PDF
一种基于改进YOLOv4的舰炮弹着点水柱检测方法
15
作者 王智 石章松 +2 位作者 吴鹏飞 吴中红 祁江鑫 《海军工程大学学报》 CAS 北大核心 2022年第6期35-40,共6页
为解决弹着点水柱目标准确且快速检测的问题,充分平衡检测精度和实时性要求,首先通过将轻量级深度卷积神经网络MobileNetv3与YOLOv4算法结合,并利用3×3的深度可分离卷积代替PANet中的普通卷积,构建了用于水柱检测的网络模型M-YOLO... 为解决弹着点水柱目标准确且快速检测的问题,充分平衡检测精度和实时性要求,首先通过将轻量级深度卷积神经网络MobileNetv3与YOLOv4算法结合,并利用3×3的深度可分离卷积代替PANet中的普通卷积,构建了用于水柱检测的网络模型M-YOLOv4;然后,从检测精度、模型容量和运行速度等方面将M-YOLOv4与YOLOv3、YOLOv4和YOLOv4-tiny等进行比较。研究结果表明:M-YOLOv4对水柱目标具有良好的检测效果,能够达到与YOLOv4相当的检测精度,并且参数量显著减少、运行速度更快。 展开更多
关键词 水柱检测 yolov4 深度可分离卷积 MobileNetv3 K-MEANS聚类算法
在线阅读 下载PDF
改进YOLOv4的实验室设备检测算法 被引量:4
16
作者 李昊霖 徐凌桦 张航 《计算机工程与设计》 北大核心 2023年第1期133-140,共8页
针对实验室设备的检测识别问题,提出一种改进YOLOv4算法。针对K-means聚类算法在尺度分布不均匀场景下的局限性,提出一种将数据集标注框按大小划分区间,分别聚类的IK-means++算法;在主干网络中引入通道注意力模块,提出一种阶梯状特征融... 针对实验室设备的检测识别问题,提出一种改进YOLOv4算法。针对K-means聚类算法在尺度分布不均匀场景下的局限性,提出一种将数据集标注框按大小划分区间,分别聚类的IK-means++算法;在主干网络中引入通道注意力模块,提出一种阶梯状特征融合网格加强特征融合能力;以计算机实验室为例构建数据集进行训练。实验结果表明,IK-means++算法聚类效果得到有效提升;改进后的YOLOv4算法检测精度更高,模型复杂度更低,速度更快。 展开更多
关键词 实验室设备 检测识别 先验框聚类 yolov4算法 通道注意力 特征融合 复杂度
在线阅读 下载PDF
基于YOLOV4的工件表面质量在线检测方法研究 被引量:4
17
作者 陈启鹏 熊巧巧 +2 位作者 黄海松 袁庆霓 李宜汀 《包装工程》 CAS 北大核心 2023年第3期148-156,共9页
目的 提升自动化产线上工件表面微小缺陷的检测精度和检测速度。方法 首先,在预处理阶段提出采用CutMix的数据增强方法,增加训练样本的多样性,提高模型的鲁棒性和泛化能力,避免训练模型产生过拟合;使用K–means++聚类算法生成边界候选框... 目的 提升自动化产线上工件表面微小缺陷的检测精度和检测速度。方法 首先,在预处理阶段提出采用CutMix的数据增强方法,增加训练样本的多样性,提高模型的鲁棒性和泛化能力,避免训练模型产生过拟合;使用K–means++聚类算法生成边界候选框,以适应不同尺寸的缺陷,并较早地筛选出更精细的特征。其次,借助CSP Darknet53网络及SPP模块提取输入原始图像的特征,通过训练获得针对工件表面质量的在线检测模型,提升YOLOV4缺陷位置检测及识别的精度。结果 实验结果表明,文中所提出的基于YOLOV4的工件表面质量在线监测方法的预测精度达到97.5%,检测速度达到32.8帧/s,均优于同类的深度学习算法。以贵州某航空工业产品的自动化产线作为实验平台验证了所提方法的可行性和有效性。结论 该方法具备结构简单清晰、自适应性强等优点,检测精度和速度均满足工业场景需求,可以将其用于产品表面质量的在线检测。 展开更多
关键词 表面质量 yolov4 数据增强 聚类算法 特征提取 在线检测
在线阅读 下载PDF
基于ECA和YOLOv4的轻量级目标检测网络设计 被引量:6
18
作者 李秉涛 何勇 袁琳琳 《传感器与微系统》 CSCD 北大核心 2023年第9期100-104,共5页
针对传统的目标检测网络存在参数量大、检测速度慢等不足,在计算资源受限的设备上难以满足实时性需求的问题,提出一种改进的YOLOv4-tiny目标检测算法,使用Bneck_E替换主特征提取网络的CSP结构,在深层特征提取网络中,增加轻量级注意力机... 针对传统的目标检测网络存在参数量大、检测速度慢等不足,在计算资源受限的设备上难以满足实时性需求的问题,提出一种改进的YOLOv4-tiny目标检测算法,使用Bneck_E替换主特征提取网络的CSP结构,在深层特征提取网络中,增加轻量级注意力机制——高效通道注意力(ECA)机制,采用双向特征融合,用深度可分离卷积对浅层特征下采样,提高对小目标的检测精度。在PASCAL VOC数据集上实验表明,该算法平均精度均值(mAP)提高了4.4%,帧率(FPS)提升了8.9%,模型大小仅为YOLOv4-tiny的36%,有利于在嵌入式设备上部署运行。 展开更多
关键词 目标检测 yolov4-tiny算法 深度可分离卷积 高效通道注意力
在线阅读 下载PDF
基于改进YoloV4网络的虹膜定位算法 被引量:5
19
作者 杨亚男 朱晓冬 +2 位作者 刘元宁 朱琳 董霖 《吉林大学学报(理学版)》 CAS 北大核心 2022年第2期369-380,共12页
针对传统虹膜定位算法很难完成准确定位导致识别效果不稳定的问题,提出一种基于改进YoloV4网络的虹膜定位算法.首先利用YoloV4结合MobileNetV3对虹膜内外圆进行粗定位,再利用瞳孔、虹膜和巩膜的灰度差值分别对虹膜内外圆进行精定位.同时... 针对传统虹膜定位算法很难完成准确定位导致识别效果不稳定的问题,提出一种基于改进YoloV4网络的虹膜定位算法.首先利用YoloV4结合MobileNetV3对虹膜内外圆进行粗定位,再利用瞳孔、虹膜和巩膜的灰度差值分别对虹膜内外圆进行精定位.同时,使用K-means++聚类算法生成先验框;使用快速soft-DIoU-NMS算法去除预测过程冗余框,提高算法检测率;使用Focal Loss作为类别损失函数.对比实验结果表明,该算法运行速度更快,定位准确率更高,识别算法的效果更明显. 展开更多
关键词 虹膜定位 yolov4 快速soft-DIoU-NMS算法 K-means++聚类
在线阅读 下载PDF
采用改进YOLOv4算法的大豆单株豆荚数检测方法 被引量:11
20
作者 郭瑞 于翀宇 +3 位作者 贺红 赵永健 于慧 冯献忠 《农业工程学报》 EI CAS CSCD 北大核心 2021年第18期179-187,共9页
大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算... 大豆单株豆荚数检测是考种的重要环节,传统方法通过人工目测的方式获取豆荚类型和数量,该方法费时费力且误差较大。该研究利用大豆单株表型测量仪采集到的表型数据,通过融合K-means聚类算法与改进的注意力机制模块,对YOLOv4目标检测算法进行了改进,使用迁移学习预训练,获取最优模型对测试集进行预测。试验结果表明,该研究模型的平均准确率为80.55%,数据扩充后准确率达到了84.37%,比育种专家目测准确率提高了0.37个百分点,若不考虑5粒荚,该研究模型的平均准确率为95.92%,比YOLOv4模型提高了10.57个百分点,具有更强的检测性能。在简单背景的摆盘豆荚检测中,该研究模型预测的平均准确率达到了99.1%,比YOLOv4模型提高了1.81个百分点,研究结果表明该模型在不同场景下的大豆豆荚检测中具有较强的泛化能力,可为大豆人工智能育种提供参考。 展开更多
关键词 图像识别 算法 大豆 豆荚检测 yolov4 K-MEANS聚类 注意力机制
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部