期刊文献+
共找到743篇文章
< 1 2 38 >
每页显示 20 50 100
基于改进边界框回归损失的YOLOv3检测算法 被引量:10
1
作者 沈记全 陈相均 翟海霞 《计算机工程》 CAS CSCD 北大核心 2022年第3期236-243,共8页
YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失... YOLOv3检测算法中的边界框回归损失函数对边界框尺度敏感,且与算法检测效果评价标准交并比(IoU)之间的优化不具有强相关性,无法准确反映真值框与预测框之间的重叠情况,造成收敛效果不佳。针对上述问题,提出基于IoU的改进边界框回归损失算法BR-IoU。将IoU作为边界框回归损失函数的损失项,使不同尺度的边界框在回归过程中获得更均衡的损失优化权重。在此基础上,通过添加惩罚项最小化预测框与真值框中心点间围成的矩形面积,并提高预测框与真值框之间宽高比的一致性,从而优化边界框的回归收敛效果。在PASCAL VOC和COCO数据集上的实验结果表明,在不影响实时性的前提下,BR-IoU能够有效提高检测精度,采用BR-IoU的YOLOv3算法在PASCAL VOC 2007测试集上mAP较原YOLOv3算法和G-YOLO算法分别提高2.5和1.51个百分点,在COCO测试集上分别提高2.07和0.66个百分点。 展开更多
关键词 yolov3检测算法 边界框回归 交并比 BR-IoU损失算法 宽高比
在线阅读 下载PDF
BM3D-YOLOv8-s:前视声呐图像目标检测算法
2
作者 陈美龙 赵新华 叶秀芬 《仪器仪表学报》 北大核心 2025年第2期234-246,共13页
前视声呐作为海洋探测的重要传感器之一,能够远距离探测水下目标,被广泛应用于目标检测和跟踪领域中。然而,声呐数据采集时受海洋环境噪声影响,噪声分布不均匀,使得声呐图像的目标探测精度低。采用传统卷积神经网络对前视声呐目标进行... 前视声呐作为海洋探测的重要传感器之一,能够远距离探测水下目标,被广泛应用于目标检测和跟踪领域中。然而,声呐数据采集时受海洋环境噪声影响,噪声分布不均匀,使得声呐图像的目标探测精度低。采用传统卷积神经网络对前视声呐目标进行跟踪时,因为声呐图像序列帧率较低、目标特征不清晰,容易出现目标丢失问题。针对前视声呐图像噪声污染严重的问题,结合前视声呐图像的特点,提出了一种改进的BM3D算法,减少3D转换处理的计算量,在基础估计的相似块匹配距离计算过程中,采用曼哈顿距离替代欧氏距离,更好地处理声呐图像中不同类型和强度的噪声;针对目标丢失问题,提出了基于YOLOv8-s改进网络的前视声呐图像目标检测算法,包括基于ConvNeXt的C2N改进算法、添加浅特征检测头和归一化Wasserstein距离(NWD)损失函数的改进。进行了声呐图像数据采集,并进行了实验验证。实验结果表明,改进后模型的准确率为87.2%,mAP0.5为85.4%。与改进前的YOLOv8-s模型相比,虽然模型大小只增加了4.6 MB,但是精度增加了5.1个百分点,mAP@0.5增加了4个百分点,对比其他检测模型实验结果,改进后的YOLOv8-s能够有效提升声呐图像的目标检测精度。 展开更多
关键词 前视声呐 噪声 BM3D 目标检测 yolov8-s
在线阅读 下载PDF
基于改进YOLOv3的航拍小目标检测算法
3
作者 奚琦 王明杰 +1 位作者 魏敬和 赵伟 《计算机工程》 北大核心 2025年第6期184-192,共9页
针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作... 针对小尺度目标在检测时精确率低且易出现漏检和误检等问题,提出一种改进的YOLOv3(You Only Look Once version 3)小目标检测算法。在网络结构方面,为提高基础网络的特征提取能力,使用DenseNet-121密集连接网络替换原Darknet-53网络作为其基础网络,同时修改卷积核尺寸,进一步降低特征图信息的损耗,并且为增强检测模型对小尺度目标的鲁棒性,额外增加第4个尺寸为104×104像素的特征检测层;在对特征图融合操作方面,使用双线性插值法进行上采样操作代替原最近邻插值法上采样操作,解决大部分检测算法中存在的特征严重损失问题;在损失函数方面,使用广义交并比(GIoU)代替交并比(IoU)来计算边界框的损失值,同时引入Focal Loss焦点损失函数作为边界框的置信度损失函数。实验结果表明,改进算法在VisDrone2019数据集上的均值平均精度(mAP)为63.3%,较原始YOLOv3检测模型提高了13.2百分点,并且在GTX 1080 Ti设备上可实现52帧/s的检测速度,对小目标有着较好的检测性能。 展开更多
关键词 小目标检测 yolov3 密集连接网络 损失函数 广义交并比
在线阅读 下载PDF
一种基于YOLOv7的3D目标检测算法
4
作者 周启迪 李伟 +3 位作者 宋宇萍 唐超 刘青 邹伟林 《南京理工大学学报》 北大核心 2025年第3期374-380,共7页
目前基于雷达点云的3D目标检测算法在准确度上能达到令人满意的效果,但是速度慢,很难达到自动驾驶场景下对于实时性的要求。该文在Complex-YOLO基础上进行改进,将点云数据编码投影到鸟瞰图上后,使用YOLOv7算法进行检测并通过施加注意力... 目前基于雷达点云的3D目标检测算法在准确度上能达到令人满意的效果,但是速度慢,很难达到自动驾驶场景下对于实时性的要求。该文在Complex-YOLO基础上进行改进,将点云数据编码投影到鸟瞰图上后,使用YOLOv7算法进行检测并通过施加注意力机制对不同通道的权重进行重新分配,再利用完全交并比(CIoU)损失改进模型损失函数。在KITTI数据集上的实验表明,基于YOLOv7的3D目标检测算法检测速度可以达到70.4FPS,并且在简单和中等难度的样本检测中能获得不错的性能。 展开更多
关键词 深度学习 3D目标检测 yolov7 注意力机制 自动驾驶
在线阅读 下载PDF
改进YOLOv8的无人机航拍图像小目标检测算法 被引量:3
5
作者 侯颖 吴琰 +4 位作者 寇旭瑞 黄嘉超 庹金豆 王裕旗 黄晓俊 《计算机工程与应用》 北大核心 2025年第11期83-92,共10页
无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法... 无人机拍摄影像存在大量分布密集的小目标,针对通用目标检测方法对小目标容易造成漏检和错检的问题,提出了一种改进YOLOv8的无人机航拍图像小目标检测算法。利用高分辨率浅层特征信息具有较小的感受野和更精细的空间信息特性,改进算法增加小目标物体检测头,采用四个特征检测头提升小目标检测率。设计构造ConvSPD卷积模块和BiFormer注意力增强模块的小目标检测模块组改进YOLOv8骨干网络,有效增强小目标浅层细节特征信息的捕获能力。为确保模型的硬件终端部署需求,采用可重参数化的Rep-PAN模型优化Neck网络。Head网络采用Focaler-CIoU损失函数优化回归定位损失,提高定位精度。在VisDrone-2019数据集上,改进算法平均检测精度达到51.2%,比YOLOv8提高10.9个百分点,检测速度为63.7 FPS,具有良好的实时性。 展开更多
关键词 无人机(UAV) 目标检测 深度学习 yolov8算法 注意力机制 Focaler-CIoU损失函数
在线阅读 下载PDF
改进型YOLOv3的PCB缺陷检测研究
6
作者 张健滔 黄允 +1 位作者 汪鹏宇 瞿栋 《机械设计与制造》 北大核心 2025年第7期172-177,共6页
为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的... 为了准确快速进行PCB缺陷检测,文中针对常见的PCB缺陷铜面残渣(简称RE-CU)和铜面异物(简称FB-CU),利用YOLOv3模型进行缺陷识别实验。实验结果显示:YOLOv3模型在PCB缺陷识别中有较好的检测效果,在阈值为0.5时,有缺陷图片(简称NG图片)的漏检率低于15%,无缺陷图片(简称OK图片)的误检率只有5%左右。在深入分析检测的结果后,发现对于小缺陷的识别效果较差,于是增加了一个感受野更小的检测头,构建了具有四个检测头的网络结构。利用改进型的YOLOv3算法进行实验,结果表明:改进后的YOLOv3算法具有更好的检测性能,在阈值为0.5时,OK图片的误检率较改进前降低为0.25%,并且在阈值为0.7时更是达到了0%,NG图片的漏检率较改进前也有所降低。 展开更多
关键词 深度学习 PCB 缺陷检测 yolov3算法 目标检测
在线阅读 下载PDF
基于改进YOLOv5的苹果轻量化检测算法
7
作者 王红君 刘紫宾 +1 位作者 赵辉 岳有军 《农机化研究》 北大核心 2025年第7期65-71,共7页
为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的... 为解决苹果采摘机器人检测算法存在的网络结构复杂和参数量大的问题,提出一种基于YOLOv5的轻量化苹果检测算法。首先,将YOLOv5主干网络替换为MobileNetv3,为降低网络的计算复杂度,将深度可分离卷积引入到特征融合网络中;然后,在网络的关键位置引入注意力机制,以提高算法对苹果不同特征的提取能力;最后,使用CIoU作为改进网络的损失函数,以提升模型的检测效果。试验结果表明:改进模型的检测精度为91.5%,相较于SSD、Faster R-CNN,检测精度分别提高了2.35%、3.07%,相比于YOLOv5s检测精度提高了8.20%,且模型大小约为YOLOv5s的1/3。 展开更多
关键词 苹果 检测算法 yolov5 轻量化 注意力机制
在线阅读 下载PDF
基于改进YOLOv8的遗留物品检测算法
8
作者 张震 葛帅兵 +2 位作者 陈可鑫 李友好 黄伟涛 《郑州大学学报(工学版)》 北大核心 2025年第4期40-46,共7页
针对传统基于背景减法的遗留物品检测算法难以应对人流拥挤、小目标、物品遮挡和光线变化等环境,以及基于深度学习方法中的模型准确率低等问题,提出了一种基于改进YOLOv8的遗留物品检测算法。首先,使用动态上采样DySample替换最近邻上采... 针对传统基于背景减法的遗留物品检测算法难以应对人流拥挤、小目标、物品遮挡和光线变化等环境,以及基于深度学习方法中的模型准确率低等问题,提出了一种基于改进YOLOv8的遗留物品检测算法。首先,使用动态上采样DySample替换最近邻上采样,优化上采样过程,增强模型的泛化能力。其次,将高效轻量的ADown下采样模块替代普通的下采样卷积,在降低整个模型参数量的同时,提升算法的检测精度。最后,引入EMA注意力机制,优化特征提取过程,增强特征提取能力,提升对小目标检测的效果。实验结果表明:改进后的模型YOLO-DAE在自建数据集上取得的准确率P、召回率R、mAP@50和mAP@50:95分别为93.4%,87.7%,91.7%和80.2%,相比于改进前的YOLOv8s模型在模型参数量和计算量减少的同时,分别提高了1.8百分点、1.6百分点、1.2百分点和2.1百分点,并且mAP@50和mAP@50:95均高于YOLOv5s r6.0、YOLOv6s v3.0、YOLOv7s AF和YOLOv9s,有效提升了遗留物品检测能力。 展开更多
关键词 遗留物品检测 yolov8算法 EMA注意力机制 DySample模块 ADown模块
在线阅读 下载PDF
基于改进YOLOv7的无人机图像小目标检测算法
9
作者 金涛 李昭蒂 《实验室研究与探索》 北大核心 2025年第7期118-124,143,共8页
针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新... 针对无人机图像背景复杂、遮挡及尺度变化导致的小目标错检和漏检问题,提出基于YOLOv7算法的小目标检测改进模型。该模型通过引入坐标注意力机制(CA)优化特征提取,使用自适应激活函数(ACON)增强网络非线性表达能力;同时,采用NWD作为新度量改进损失函数,以更精确衡量边界框相似性。此外,使用轻量级上采样算子CARAFE扩大感受野并聚合上下文信息。在VisDrone2019和NWPU VHR-10数据集上的实验表明,改进算法与原算法相比,mAP0.5和mAP0.5∶0.95指标均有显著提升,且与其他主流算法相比,检测精度也有明显优势。该方法为复杂环境下无人机图像小目标检测的实际应用提供了技术支撑,有助于推动相关领域的技术进步。 展开更多
关键词 无人机图像 yolov7算法 小目标检测 注意力机制 激活函数
在线阅读 下载PDF
基于改进YOLOv7-tiny的车辆目标检测算法
10
作者 赵海丽 许修常 潘宇航 《兵工学报》 北大核心 2025年第4期101-111,共11页
为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级... 为更好地保护人民的生命财产安全,针对目前依靠人力进行交通管理工作时统计不准确、反馈不及时等问题,提出一种适合部署在边缘终端设备上的基于YOLOv7-tiny算法改进的车辆目标检测算法。通过构造深度强力残差卷积块对主干网络的轻量级高效层聚合网络(Efficient Layer Aggregation Network-Tiny,ELAN-T)模块进行轻量化改进;通过削减分支,对特征融合网络的ELAN-T模块进行轻量化改进,降低网络的参数量和计算量,并对特征融合网络的结构进行重新构造;引入高效通道注意力机制和EIOU边界框损失函数提升算法的精度。在预处理后的UA-DETRAC数据集上实验,改进后的算法参数量相比于原始的YOLOv7-tiny算法降低了15.1%,计算量降低了5.3%,mAP@0.5提升了5.3个百分点。实验结果表明,改进后的算法不仅实现了轻量化,而且检测精度有所提升,适合部署在边缘终端设备上,完成对道路中车辆的检测任务。 展开更多
关键词 车辆检测 yolov7-tiny算法 深度强力残差卷积块 轻量级高效层聚合网络模块
在线阅读 下载PDF
基于SGD和余弦退火算法改进YOLOv3的高压电力设备目标检测方法 被引量:4
11
作者 刘国权 陈尚良 +1 位作者 李跃忠 周焕银 《东华理工大学学报(自然科学版)》 CAS 北大核心 2024年第3期294-300,共7页
针对现有高压电力设备检测方法存在实时性差、准确性低和难以部署在移动端等问题,提出一种基于随机梯度下降(SGD)和余弦退火算法改进YOLOv3的高压电力输送设备安全检测算法。采用网络复杂度较小、计算速度快、识别精度高且易于部署的移... 针对现有高压电力设备检测方法存在实时性差、准确性低和难以部署在移动端等问题,提出一种基于随机梯度下降(SGD)和余弦退火算法改进YOLOv3的高压电力输送设备安全检测算法。采用网络复杂度较小、计算速度快、识别精度高且易于部署的移动端YOLOv3作为算法的主要框架;然后设计了深层的残差网络(Darknet53)作为该模型的主干特征提取网络,在提高识别精度的同时解决网络过深可能产生的梯度爆炸问题;进一步地结合SGD优化算法和余弦退火算法,在保证网络训练学习效率较高的同时避免网络陷入局部最优解,以此提高高压电力设备安全检测的速度和精度,满足实际需要;最后使用采集的高压电力设备数据集对整个网络进行训练。结果表明,YOLOv3在高压电力设备数据集上的平均检测精度达到了97.08%,检测速度达到了56帧/s,误检率只有0.78%。 展开更多
关键词 高压电力设备检测 yolov3 Darknet53 SGD 余弦退火算法
在线阅读 下载PDF
基于改进YOLOv3-SPP算法的道路车辆检测 被引量:5
12
作者 王涛 冯浩 +4 位作者 秘蓉新 李林 何振学 傅奕茗 吴姝 《通信学报》 EI CSCD 北大核心 2024年第2期68-78,共11页
针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提... 针对在城市道路场景下视觉检测车辆时,车辆密集和远处车辆呈现小尺度,导致出现检测精度低或者漏检的问题,提出了一种基于改进的YOLOv3-SPP算法,对激活函数进行优化,以DIOU-NMS Loss作为边界框损失函数,增强网络的表达能力。为提高所提算法对小目标和遮挡目标的特征提取能力,引入空洞卷积模块,增大目标的感受野。实验结果表明,所提算法在检测车辆目标时m AP提高了1.79%,也有效减少了在检测紧密车辆目标时出现的漏检现象。 展开更多
关键词 车辆检测 yolov3-SPP算法 激活函数 空洞卷积 深度学习
在线阅读 下载PDF
远距离情形下的改进YOLOv8行人检测算法 被引量:1
13
作者 汤静雯 赖惠成 王同官 《计算机工程》 北大核心 2025年第4期303-313,共11页
智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取... 智慧社区场景下的行人检测需要精准识别行人以应对各类情况的发生,然而面对遮挡和远距离行人的情景,现有检测器会出现漏检、误检以及模型过大不易部署的问题。针对以上问题,提出基于YOLOv8的行人检测算法ME-YOLO。设计一种高效特征提取模块(EM),使得网络更好地学习行人特征和捕捉行人特点,在减少网络参数量的同时提高检测精度。设计一个重构的检测头模块,重新整合后的检测层增强了网络对小目标的识别能力,有效检测小目标行人。引入双向特征金字塔网络来设计新的颈部网络,即双向扩张残差-特征金字塔网络(BDR-FPN),利用扩张残差模块和附权注意力机制来扩展感受野及有所侧重地学习行人特征,缓解网络对遮挡行人不敏感问题。实验结果表明,在CityPersons数据集上进行训练和验证,相比原算法YOLOv8,ME-YOLO算法的AP_(50)提高了5.6百分点,模型参数量减少了41%,模型大小压缩了40%,在TinyPerson数据集上验证算法的有效性和泛化性,AP_(50)提高了4.1百分点,AP_(50∶95)提高了1.7百分点。该算法在大幅度减少模型参数和大小的同时,有效提高了检测精度,在智慧社区场景中有较好的应用价值。 展开更多
关键词 行人检测 智慧社区 小目标行人 特征金字塔网络 yolov8算法
在线阅读 下载PDF
改进YOLOv8的钢材表面缺陷检测算法 被引量:1
14
作者 徐莲蓉 梁少华 《现代电子技术》 北大核心 2025年第4期173-180,共8页
为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone... 为了更有效地识别钢材表面的细小和复杂缺陷,提出一种改进YOLOv8的钢材表面缺陷检测算法。首先,在原模型的Neck部分引入空间和通道重构卷积SCConv模块,提高模型对小尺度目标缺陷的识别能力;其次,将CA注意力机制模块融合到原始的Backbone中,使模型能够更好地关注目标缺陷的特征信息;接着,采用高效层聚合网络(RepGFPN)模块作为颈部网络,充分融合不同尺度的特征,提高特征融合能力;最后,引入轻量级上采样算子CARAFE,进一步提升模型的检测效果。实验结果显示,在公开的NEU-DET数据集上,改进后模型的平均精度均值(mAP)达到了81.1%,相较于原始YOLOv8模型,mAP提高了2.7%,精确率提升了3.9%。与此同时,在GC10-DET数据集上的实验也表明改进模型具有良好的鲁棒性,证明了所提算法能够有效地完成钢材表面缺陷的检测任务。 展开更多
关键词 钢材表面缺陷 缺陷检测 yolov8算法 坐标注意力机制 高效层聚合网络 识别能力
在线阅读 下载PDF
基于YOLOv5的倾斜视角下轻型红外小目标检测算法
15
作者 张飞 王剑 张岳松 《红外技术》 北大核心 2025年第2期217-225,共9页
针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来... 针对倾斜视角下的红外行人小目标难以快速准确检测的问题,提出了一种红外行人小目标轻量化实时检测网络模型DRA-YOLO。首先,使用K-means++锚框聚类自适应不同大小尺度目标,从而加快网络收敛并提高检测精度。其次,融入不同注意力机制来重新设计特征提取网络,提高特征定位与计算效率,并搭配改进特征金字塔结构提取关键特征和提升模型稳定性。最后,颈部去掉下采样重新搭配SimAM形成新的特征融合结构,并重新设计检测头来适应本文数据集。对比实验显示,相对原始YOLOv5s模型,在自制和公共数据集上表现突出。m AP50达到94.5%,检测速度提高20.8%,模型大小压缩至10.1 MB,降低了30.3%,且GFLOPs下降了29.1%。这些改进实现了对目标的准确快速检测,有效地平衡了模型大小、检测精度和推理速度。 展开更多
关键词 图像处理 行人检测 红外场景 模型优化 yolov5算法
在线阅读 下载PDF
基于改进YOLOv8n的3D打印实时异常诊断算法
16
作者 金凯 周敏 +2 位作者 胡佳乐 李欢 赵松怀 《机床与液压》 北大核心 2025年第7期177-183,共7页
针对3D打印过程中异常诊断实时性不足和准确度不高的问题,提出一种改进的YOLOv8n模型(DSW-YOLOv8n)。在骨干网络中引入动态蛇形卷积(DSConv),增强网络对3D打印中出现的拉丝等细长弯曲局部结构特征的提取能力。增加小目标检测层并融入SA... 针对3D打印过程中异常诊断实时性不足和准确度不高的问题,提出一种改进的YOLOv8n模型(DSW-YOLOv8n)。在骨干网络中引入动态蛇形卷积(DSConv),增强网络对3D打印中出现的拉丝等细长弯曲局部结构特征的提取能力。增加小目标检测层并融入SA注意力机制,提升对小目标的异常检测能力。针对3D打印实时捕获图像质量低的问题,引入动态调整边界的Wise-IoU(WIoUv3)损失函数,降低对距离和纵横比等几何因素的惩罚,从而提高检测精度。最后,通过搭建实验平台,对所提模型进行性能验证。结果表明:DSW-YOLOv8n模型对3D打印异常检测精度和速度均优于Faster R-CNN、SSD和YOLOv5s等主流检测方法,其精度均值(mAP)达到了90.3%,较原始YOLOv8n模型提高了2.8%,平均帧率达到113帧/s,满足实时检测需求。 展开更多
关键词 3D打印 实时异常检测 yolov8n 动态蛇形卷积 小目标检测
在线阅读 下载PDF
改进YOLOv8的恶劣天气下船舶目标检测算法研究
17
作者 李纯杰 蔡易南 +1 位作者 胡杰 詹炜 《现代电子技术》 北大核心 2025年第12期77-82,共6页
针对现有内河航道中由于雨、雪、雾等恶劣天气导致的船只检测困难问题,提出一种基于YOLOv8的航道船舶目标检测方法,即YOLOv8-Ship。该算法设计一种特征聚焦扩散金字塔网络,融合YOLOv9中的ADown模块,使每个尺度的特征保留更多的上下文信... 针对现有内河航道中由于雨、雪、雾等恶劣天气导致的船只检测困难问题,提出一种基于YOLOv8的航道船舶目标检测方法,即YOLOv8-Ship。该算法设计一种特征聚焦扩散金字塔网络,融合YOLOv9中的ADown模块,使每个尺度的特征保留更多的上下文信息;同时引入聚核初始网络(PKINet)以及上下文锚点注意力模块(CAA)改进C2f,来增强中心区域的特征;最后采用深度可分离卷积取代骨干网络中的普通卷积,减少模型参数量和计算量。实验结果表明,在雨、雪、雾的天气条件下,与传统的YOLOv8n相比,改进算法的精确率提高了0.5%,召回率提升了3.4%,F1分数提升了2%,mAP@0.5提升了1.2%,平均精度均值达到97.5%,有效提高了内河航道恶劣天气下过往船只的识别精度,具备较强的鲁棒性。 展开更多
关键词 船舶检测 yolov8算法 恶劣天气 聚核初始网络 上下文锚点注意力模块 特征识别
在线阅读 下载PDF
基于Yolov8+U-Net算法的混凝土坝表面缺陷检测分析
18
作者 刘蕙 黄耀英 +1 位作者 徐世媚 魏海东 《中国农村水利水电》 北大核心 2025年第6期134-140,共7页
高效、精确进行混凝土坝缺陷图像检测分析是确保大坝安全运行的必要工作。针对混凝土坝表面缺陷图像具有多类别、独特性以及现有大坝现场巡视检查高质量样本不足等问题,首先通过自制混凝土板模拟裂缝和渗漏等典型缺陷,构建混凝土坝多类... 高效、精确进行混凝土坝缺陷图像检测分析是确保大坝安全运行的必要工作。针对混凝土坝表面缺陷图像具有多类别、独特性以及现有大坝现场巡视检查高质量样本不足等问题,首先通过自制混凝土板模拟裂缝和渗漏等典型缺陷,构建混凝土坝多类别缺陷数据集,进而采用Yolov8+U-Net“两步法”建立混凝土坝多类别表面缺陷检测分析模型,最后以某混凝土重力坝现场巡视检查表面缺陷图像作为测试对象,采用所建立的检测分析模型进行智能检测。结果表明,采用Yolov8+U-Net算法的“两步法”模型可实现混凝土坝渗水和裂缝缺陷的高效、准确检测,所建模型识别定位精确率为0.84、召回率为0.98,分割精确率为0.91、召回率为0.71。 展开更多
关键词 深度学习 混凝土坝 图像检测 yolov8算法 U-Net算法
在线阅读 下载PDF
融合注意力机制的YOLOv8火焰目标检测算法 被引量:1
19
作者 钱伟 杨潇 +2 位作者 刘全义 罗宏 王海斌 《安全与环境学报》 北大核心 2025年第1期75-84,共10页
目前民航客机货舱火灾探测主要通过烟雾探测实现,存在漏报、误报、实时性差等问题,基于视觉的视频图像探测是解决上述问题的重要技术。针对视频图像检测火焰算法多收敛速度慢等问题,提出了基于YOLOv8优化的火焰检测算法模型。首先,在众... 目前民航客机货舱火灾探测主要通过烟雾探测实现,存在漏报、误报、实时性差等问题,基于视觉的视频图像探测是解决上述问题的重要技术。针对视频图像检测火焰算法多收敛速度慢等问题,提出了基于YOLOv8优化的火焰检测算法模型。首先,在众多视频火焰检测算法中,以火焰检测精准度筛选出YOLOv8算法作为底层火焰检测算法,针对YOLOv8算法,以优化速度为方向,设计了RFAConv卷积方式,运用组卷积方式融合卷积通道,以达到减少YOLOv8计算量、提升运算速度的目的。通过采集模拟货舱大空间火灾火焰图像,验证了优化后的YOLOv8火焰检测算法在检测精度不变的情况下,压缩了10%的参数量,实现了算法的轻量化,提升了运算效率。 展开更多
关键词 安全工程 火焰识别 yolov8 图像检测 算法优化
在线阅读 下载PDF
融合MobileNetv3的轻量级YOLOv8钢材表面缺陷检测
20
作者 胡名琪 陈辉明 +2 位作者 徐伟 郭诚君 刘秋明 《科学技术与工程》 北大核心 2025年第16期6831-6840,共10页
针对钢材表面缺陷人工检测成本高昂、检测精度不高,以及传统的目标检测方法模型复杂,导致对终端检测设备的计算资源要求较高等问题,融合MobileNetv3轻量化YOLOv8算法提出一种轻量级缺陷检测算法YOLOv8n-MDC。首先,以YOLOv8n为基础,将YOL... 针对钢材表面缺陷人工检测成本高昂、检测精度不高,以及传统的目标检测方法模型复杂,导致对终端检测设备的计算资源要求较高等问题,融合MobileNetv3轻量化YOLOv8算法提出一种轻量级缺陷检测算法YOLOv8n-MDC。首先,以YOLOv8n为基础,将YOLOv8n的自带IoU(intersection over union)候选框损失函数替换成WIoU(weighted IoU)函数,通过增添非单调聚焦机制,提高模型的鲁棒性。其次,使用MobileNetv3网络替换YOLOv8n的骨干特征提取网络模块,将轻量级网络用于特征提取端降低网络复杂度,减少冗余开销。最后,在特征融合阶段使用DW卷积和C3Ghost模块对原网络的相应模块进行替换,使改进后的网络减少模型参数,进一步提升检测速度。使用钢材表面缺陷数据集NEU-DET进行模型验证,YOLOv8n-MDC模型mAP达81.3%,较YOLOv8n模型提升5%;参数量与计算量分别为1.02 M和2.1 GFLOPs,仅为原模型的33.9%和25.9%,达到工业要求。提出的轻量级算法在保证检测精度提升的同时大大降低了算法的复杂度和计算资源的开销,为钢材表面缺陷检测提供了一个优化思路。 展开更多
关键词 钢材表面缺陷 缺陷检测 轻量级网络 yolov8 MobileNetv3
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部