针对基于You Only Look Once v2算法的目标检测存在精度低及稳健性差的问题,提出一种车辆目标实时检测的You Only Look Once v2优化算法;该算法以You Only Look Once v2算法为基础,通过增加网络深度,增强特征提取能力,同时,通过添加残...针对基于You Only Look Once v2算法的目标检测存在精度低及稳健性差的问题,提出一种车辆目标实时检测的You Only Look Once v2优化算法;该算法以You Only Look Once v2算法为基础,通过增加网络深度,增强特征提取能力,同时,通过添加残差模块,解决网络深度增加带来的梯度消失或弥散问题;该方法将网络结构中低层特征与高层特征进行融合,提升对小目标车辆的检测精度。结果表明,通过在KITTI数据集上进行测试,优化后的算法在检测速度不变的情况下,提高了车辆目标检测精度,平均精度达到0.94,同时提升了小目标检测的准确性。展开更多
针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土...针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土构件的典型裂缝图像,并通过图像数据增强建立Pascal VOC数据集,然后基于Facebook公司开发的深度学习框架Pytorch,利用数据集训练YOLOX算法,并进行裂缝识别和验证;将训练完成后YOLOX算法移植至搭载安卓系统的手机端,进行现场实时检测操作。结果表明:在迭代次数为700时,混凝土构件裂缝识别精度可达88.84%,能有效筛分混凝土构件表面裂缝,并排除其他干扰项,证明了所提出的方法对裂缝具有较高的识别精度和广泛的适用性;经试验测试,移植至手机端的YOLOX算法能在提升便携性的同时保证高效、准确的检测效果,具有良好的应用前景。展开更多
针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分...针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分支,提升小目标特征信息流通效率,提高了小目标的检测精度;设计基于空洞卷积组与卷积注意力机制的感受野增强模块(receptive field augmentation module,RFAM),捕获了更大范围的感受野和图像特征,改善了遮挡目标漏检率高的问题;根据三分支注意力机制构建特征增强网络(feature enhancement network,FENet),抑制背景噪音对目标区域的干扰,降低了复杂背景下的目标误检率;引入空间到深度卷积(space to depth-conv,SPD-Conv)得到无信息损失的二倍下采样特征图,保留了更多的特征信息,同时减少了模型的参数量。实验结果表明,所提算法的均值平均精度相较于基线算法提升了2.78个百分点,FPS达到了102.67,满足了爆破现场安全帽实时检测的需要。展开更多
构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替...构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。展开更多
文摘针对基于You Only Look Once v2算法的目标检测存在精度低及稳健性差的问题,提出一种车辆目标实时检测的You Only Look Once v2优化算法;该算法以You Only Look Once v2算法为基础,通过增加网络深度,增强特征提取能力,同时,通过添加残差模块,解决网络深度增加带来的梯度消失或弥散问题;该方法将网络结构中低层特征与高层特征进行融合,提升对小目标车辆的检测精度。结果表明,通过在KITTI数据集上进行测试,优化后的算法在检测速度不变的情况下,提高了车辆目标检测精度,平均精度达到0.94,同时提升了小目标检测的准确性。
文摘针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土构件的典型裂缝图像,并通过图像数据增强建立Pascal VOC数据集,然后基于Facebook公司开发的深度学习框架Pytorch,利用数据集训练YOLOX算法,并进行裂缝识别和验证;将训练完成后YOLOX算法移植至搭载安卓系统的手机端,进行现场实时检测操作。结果表明:在迭代次数为700时,混凝土构件裂缝识别精度可达88.84%,能有效筛分混凝土构件表面裂缝,并排除其他干扰项,证明了所提出的方法对裂缝具有较高的识别精度和广泛的适用性;经试验测试,移植至手机端的YOLOX算法能在提升便携性的同时保证高效、准确的检测效果,具有良好的应用前景。
文摘针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分支,提升小目标特征信息流通效率,提高了小目标的检测精度;设计基于空洞卷积组与卷积注意力机制的感受野增强模块(receptive field augmentation module,RFAM),捕获了更大范围的感受野和图像特征,改善了遮挡目标漏检率高的问题;根据三分支注意力机制构建特征增强网络(feature enhancement network,FENet),抑制背景噪音对目标区域的干扰,降低了复杂背景下的目标误检率;引入空间到深度卷积(space to depth-conv,SPD-Conv)得到无信息损失的二倍下采样特征图,保留了更多的特征信息,同时减少了模型的参数量。实验结果表明,所提算法的均值平均精度相较于基线算法提升了2.78个百分点,FPS达到了102.67,满足了爆破现场安全帽实时检测的需要。
文摘前视合成孔径雷达(Synthetic Aperture Radar,SAR)在舰船成像方面展现出了巨大潜力,特别是在SAR导引头的应用上,弹载雷达通常在末制导阶段要求雷达正对着舰船运动,以实现精准打击。针对前视条件下传统SAR成像方法所面临的挑战,本文提出了一种基于极坐标格式算法(Polar Format Algorithm,PFA)的前视SAR舰船目标立面成像方法。该方法巧妙利用了舰船的三维特性,即使雷达工作在前视模式下,虽然在方位向上无法有效分辨目标,但在俯仰向上仍然存在多普勒频率的变化,因此可以在距离向和俯仰向上实现对舰船的二维高分辨率成像。此外,这种成像方法能够提供更为直观的舰船立面图像,这对于识别舰船类型、判断潜在威胁以及对其进行精准打击具有重大意义。最后,通过仿真实验对该方法进行了验证,利用PFA获得了清晰的舰船立面图像。
文摘构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。