期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
基于You Only Look Once v2优化算法的车辆实时检测 被引量:4
1
作者 王楷元 韩晓红 《济南大学学报(自然科学版)》 CAS 北大核心 2020年第5期443-449,共7页
针对基于You Only Look Once v2算法的目标检测存在精度低及稳健性差的问题,提出一种车辆目标实时检测的You Only Look Once v2优化算法;该算法以You Only Look Once v2算法为基础,通过增加网络深度,增强特征提取能力,同时,通过添加残... 针对基于You Only Look Once v2算法的目标检测存在精度低及稳健性差的问题,提出一种车辆目标实时检测的You Only Look Once v2优化算法;该算法以You Only Look Once v2算法为基础,通过增加网络深度,增强特征提取能力,同时,通过添加残差模块,解决网络深度增加带来的梯度消失或弥散问题;该方法将网络结构中低层特征与高层特征进行融合,提升对小目标车辆的检测精度。结果表明,通过在KITTI数据集上进行测试,优化后的算法在检测速度不变的情况下,提高了车辆目标检测精度,平均精度达到0.94,同时提升了小目标检测的准确性。 展开更多
关键词 深度学习 车辆检测 you only look once v2算法 残差模块 特征融合
在线阅读 下载PDF
基于改进YOLOx-s的无人机桥梁裂缝检测算法
2
作者 徐伟峰 吕航 +4 位作者 程子益 陆安文 王洪涛 王晏如 李昇 《吉林大学学报(理学版)》 北大核心 2025年第4期1091-1098,共8页
针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提... 针对桥梁裂缝检测不充分的安全隐患问题,结合小型无人机平台提出一种基于YOLOx-s的桥梁裂缝检测算法.首先,在backbone中添加残差空洞卷积模块,以解决无人机图像尺度变化大、背景复杂的问题;其次,在PANET中添加坐标注意力机制模块,以提高小目标检测率;最后,替换损失函数为Focal loss,以加强正样本的学习,提高模型的稳定性.实验结果表明:该方法相比于YOLOx-s算法,检测精度提升了3.72个百分点;在嵌入式设备上,该方法比其他主流算法有更好的精度,且能实现实时性检测,可以更好地应用在无人机桥梁裂缝检测中. 展开更多
关键词 无人机 桥梁裂缝检测 目标检测 yolox-s算法 注意力机制
在线阅读 下载PDF
改进YOLOX-S的智慧港口目标检测算法
3
作者 江鉴 袁志群 +2 位作者 高秀晶 何鸿正 谷子硕 《计算机工程与设计》 北大核心 2025年第7期2045-2053,共9页
针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数... 针对单目摄像头在港口场景下面临目标检测算法识别不稳定的问题,提出一种改进YOLOX-S目标检测算法。引入大核注意力机制改进主干提取网络的特征输出与BottleNeck模块,提高算法特征提取的能力;引入中心点余弦距离损失改进目标框损失函数,解决训练损失虽收敛但目标框仍抖动的问题;引入深度可分离卷积模块优化检测头模块,提高检测精度同时减少模型大小;实车录制智慧港口不同场景20 906张图片进行实验,其结果表明,改进算法与YOLOX-S相比,mAP@0.5:0.95提高5.1%,模型权重大小降低8.8%,TensorRT部署检测帧率为25.0 FPS。改进方法与实验结果可为智慧港口场景下的视觉感知算法开发提供参考。 展开更多
关键词 智慧港口 自动驾驶 目标检测 yolox-S算法 大核注意力机制 ACE-IOU损失 深度可分离卷积
在线阅读 下载PDF
基于无人机及YOLOX视觉算法的大跨度钢结构吊装过程位移监测 被引量:3
4
作者 李万润 范博源 +1 位作者 赵文海 杜永峰 《振动与冲击》 EI CSCD 北大核心 2024年第17期61-70,共10页
在大跨度钢结构吊装施工过程中,节点位移及结构变形关系到吊装施工的安全和质量。对于传统接触式监测方法存在的耗时、耗力且维护费用高等问题,提出了一种以无人机为载体的非接触式监测方式。首先,针对大跨度钢结构吊装过程中无人机近... 在大跨度钢结构吊装施工过程中,节点位移及结构变形关系到吊装施工的安全和质量。对于传统接触式监测方法存在的耗时、耗力且维护费用高等问题,提出了一种以无人机为载体的非接触式监测方式。首先,针对大跨度钢结构吊装过程中无人机近距采集视角受限的问题,采用Harris图像拼接算法进行全景拼接,并与图像加权融合相结合,消除图像拼接中产生的不利光标及拼接缝,实现整体、高精度的大跨度结构图像的无缝拼接;其次,采用加入卷积块注意力机制(convolutional block attention module, CBAM)的YOLOX视觉算法解决复杂背景下不同像素面积的小目标图像识别、坐标提取和位移监测;最后,对四种不同检测模型进行对比评估,并通过对比实验室不同工况试验和实际工程验证该方法在施工环境下对大跨度钢结构测点位移监测的可行性。试验结果表明,加入CBAM注意力机制的YOLOX检测模型的平均精度及置信度均优于其他三种网络模型,且视觉识别的位移信息与Leica全站仪的误差均在亚毫米级内,满足实际工程精度的要求,实现了复杂背景下的小目标位移监测,具备较高的经济效益和广泛的应用前景。 展开更多
关键词 大跨度钢结构 无人机 图像拼接 yolox视觉算法 位移监测
在线阅读 下载PDF
基于改进YOLOX的水库水面漂浮物目标检测算法 被引量:1
5
作者 谭文群 曾祥君 +2 位作者 包学才 梁义 许小华 《人民长江》 北大核心 2024年第3期249-256,共8页
针对目前水库水面小目标漂浮物检测识别精度低的问题,提出基于改进YOLOX的水库水面漂浮物目标检测算法。此算法引入新型dark2模块融入主干网络并拓展主干网络的分支输出结构,提升主干网络对图片的特征提取能力。在此基础上,提出改进特... 针对目前水库水面小目标漂浮物检测识别精度低的问题,提出基于改进YOLOX的水库水面漂浮物目标检测算法。此算法引入新型dark2模块融入主干网络并拓展主干网络的分支输出结构,提升主干网络对图片的特征提取能力。在此基础上,提出改进特征融合模块(ZL-FPN),用于增强特征图信息融合,提高对水库水面小目标漂浮物的检测精度。结果表明:改进后算法的mAP值比YOLOv4和原YOLOX算法分别提升了29.93%和12.11%,有效提升了水库水面漂浮物检测精度。研究成果可为提升水库智能化管理水平提供有效技术支撑。 展开更多
关键词 水面小目标漂浮物 目标检测 yolox算法 水库智能化管理
在线阅读 下载PDF
基于深度学习YOLOX算法的混凝土构件裂缝智能化检测方法 被引量:6
6
作者 刘珂铖 谢群 李雁军 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第3期341-349,共9页
针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土... 针对现有混凝土构件裂缝人工检测操作不仅费时、费力,而且易出现错检、误检、漏检,以及部分位置难以开展检测的问题,提出一种基于深度学习YOLOX(You Only Look Once)算法的混凝土构件裂缝智能化检测方法;首先采集、整理包含各类混凝土构件的典型裂缝图像,并通过图像数据增强建立Pascal VOC数据集,然后基于Facebook公司开发的深度学习框架Pytorch,利用数据集训练YOLOX算法,并进行裂缝识别和验证;将训练完成后YOLOX算法移植至搭载安卓系统的手机端,进行现场实时检测操作。结果表明:在迭代次数为700时,混凝土构件裂缝识别精度可达88.84%,能有效筛分混凝土构件表面裂缝,并排除其他干扰项,证明了所提出的方法对裂缝具有较高的识别精度和广泛的适用性;经试验测试,移植至手机端的YOLOX算法能在提升便携性的同时保证高效、准确的检测效果,具有良好的应用前景。 展开更多
关键词 深度学习 yolox(you only look once)算法 混凝土构件 裂缝识别
在线阅读 下载PDF
基于改进YOLOX算法的杨梅成熟度检测方法 被引量:2
7
作者 项新建 周焜 +2 位作者 费正顺 郑永平 姚佳娜 《中国农机化学报》 北大核心 2023年第10期201-208,共8页
为实现杨梅采摘智能化,开发杨梅成熟度检测设备,提出一种基于改进YOLOX-NANO算法的杨梅果实成熟度检测方法。通过在特征加强提取网络层中引入通道注意力模块,提高网络对通道特征的提取能力;引入焦点损失函数代替标准交叉熵损失函数,解... 为实现杨梅采摘智能化,开发杨梅成熟度检测设备,提出一种基于改进YOLOX-NANO算法的杨梅果实成熟度检测方法。通过在特征加强提取网络层中引入通道注意力模块,提高网络对通道特征的提取能力;引入焦点损失函数代替标准交叉熵损失函数,解决单阶段网络正负样本不均衡问题,避免梯度方向指向非最优解;使用高效交并比损失函数,提高网络模型对目标识别的准确率。试验结果表明,在自建数据集上与原YOLOX-NANO相比,改进YOLOX-NANO算法对于三种不同成熟度杨梅果实的识别精度均有提升,平均精度达到92.67%,而网络模型大小只增加0.059 MB,推理速度不变,在精度达到与标准结构网络相当的前提下,更易于部署到嵌入式设备中。 展开更多
关键词 杨梅 yolox-NANO算法 通道注意力机制 焦点损失函数 高效交并比
在线阅读 下载PDF
基于改进YOLOX模型的芝麻蒴果检测方法研究 被引量:5
8
作者 王川 赵恒滨 +4 位作者 李国强 张建涛 高桐梅 赵巧丽 郑国清 《河南农业科学》 北大核心 2022年第11期155-162,共8页
为实现密集条件下芝麻蒴果的准确检测,提出基于YOLOX模型的芝麻蒴果检测定位方法(CE-YOLOX模型)。该模型以CSPDarknet-53作为主干特征提取网络,在路径聚合网络PANet中增加104×104大尺度特征层,增强对目标细粒度特征信息的获取;通... 为实现密集条件下芝麻蒴果的准确检测,提出基于YOLOX模型的芝麻蒴果检测定位方法(CE-YOLOX模型)。该模型以CSPDarknet-53作为主干特征提取网络,在路径聚合网络PANet中增加104×104大尺度特征层,增强对目标细粒度特征信息的获取;通过引入注意力机制模块获取目标重要的轮廓特征和空间位置信息;将传统的NMS替换为更有利于重叠目标检测的Soft-NMS算法来降低漏检情况。结果表明,在IoU阈值为0.5时,CE-YOLOX模型在全部测试集上的调和均值(F_(1))、召回率、平均精度分别为0.99、98.65%、99.71%,与原模型YOLOX相比,该模型分别提升了0.05、6.27个百分点、3.28个百分点。通过蒴果计数试验,CE-YOLOX模型计数准确率为96.84%,比YOLOX模型提高了5.28个百分点。改进后的模型CE-YOLOX适用于密集条件下芝麻蒴果检测。 展开更多
关键词 芝麻蒴果 果实检测 注意力机制 目标检测算法 yolox
在线阅读 下载PDF
Re-YOLOX:利用Resizer改进的YOLOX近岸海域监测目标识别模型 被引量:2
9
作者 王振华 谭智联 +1 位作者 李静 常英立 《自然资源遥感》 CSCD 北大核心 2023年第3期10-16,共7页
近岸海域监测包括自然环境监测和人类活动监测,其监测目标的高精准识别对海洋经济的健康发展、海洋环境的生态保护以及海洋防灾减灾等都有重要的作用。近岸海域监测目标具有多类型、多尺寸和不确定性等特征,现有识别模型在对近岸海域监... 近岸海域监测包括自然环境监测和人类活动监测,其监测目标的高精准识别对海洋经济的健康发展、海洋环境的生态保护以及海洋防灾减灾等都有重要的作用。近岸海域监测目标具有多类型、多尺寸和不确定性等特征,现有识别模型在对近岸海域监测目标识别时,存在精度和效率欠佳、小目标漏检现象严重等问题。针对上述问题,利用可学习的图像调整模型(Resizer model)改进YOLOX,提出了面向近岸海域监测目标的识别模型(Re-YOLOX),包括:①利用Resizer model加强模型训练,提升模型的特征学习能力和表达能力,提高模型的召回率;②改进YOLOX的特征金字塔融合结构,减少小目标识别的漏检问题。用无人机监测的近岸海域视频数据作数据集,以车辆、船只和堆砌物为监测目标,将提出的Re-YOLOX模型与CenterNet,Faster R-CNN,YOLOv3和YOLOX等模型进行比较。结果表明,Re-YOLOX模型的平均预测精准率mAP可达94.23%,平均召回率mR可达91.99%,平均F1值mF1可达89.67%,均高于对比模型。综上所述,文章提出Re-YOLOX在保证目标识别效率的前提下提高了目标识别的精度,可为近岸海域管理提供技术支撑。 展开更多
关键词 近岸海域 目标识别 yolox算法 无人机监测数据
在线阅读 下载PDF
基于改进YOLOX的变电站工人防护设备检测研究 被引量:7
10
作者 崔铁军 郭大龙 《中国安全生产科学技术》 CAS CSCD 北大核心 2023年第4期201-206,共6页
为解决电气工人防护设备检测问题,通过改进YOLOX算法,提出检测工作人员防护设备的模型。首先在预测部分改进损失函数,为解决损失函数计算存在的缺陷,对IOU损失的计算方法进行改进,根据防护设备任务特性,通过调整各种类型损失函数的权重... 为解决电气工人防护设备检测问题,通过改进YOLOX算法,提出检测工作人员防护设备的模型。首先在预测部分改进损失函数,为解决损失函数计算存在的缺陷,对IOU损失的计算方法进行改进,根据防护设备任务特性,通过调整各种类型损失函数的权重,增加对模型误判的惩罚,对模型进行优化;其次在算法主干网络中引入CBAM注意力模块提高神经网络对工人防护设备的感知能力;最后在算法Neck部分,将UpSample结构用于多尺度特征融合,加强网络的细节表达能力,从而提升对小目标困难样本的检测精度。研究结果表明:改进后的YOLOX模型平均精度均值达到87.24%,与已有YOLOX模型相比提升2.46%,具备有效性,适用于变电站工人防护设备检测。研究结果可为电气工人提供更高的防护装备检测精度。 展开更多
关键词 电气安全 改进yolox 变电站 工人防护 防护设备检测 注意力机制
在线阅读 下载PDF
基于FPGA的多普勒频移提取方法
11
作者 柴哲凡 王红亮 《仪表技术与传感器》 北大核心 2025年第5期66-70,80,共6页
多普勒频移提取是水域探测仪器的关键步骤,频移提取精度直接影响测量结果的精度。文中基于FPGA实现了以复相关算法为核心的多普勒频移提取方法,该方法具有灵活性强、可根据不同场景进行配置等特点。设计了基于双查找表的复相关计算方法... 多普勒频移提取是水域探测仪器的关键步骤,频移提取精度直接影响测量结果的精度。文中基于FPGA实现了以复相关算法为核心的多普勒频移提取方法,该方法具有灵活性强、可根据不同场景进行配置等特点。设计了基于双查找表的复相关计算方法,与使用CORDIC IP核计算反正切运算的方法相比,其计算速度更快,也能保证较高的计算精度;与传统的查找表法相比,该方法能够在占用少量FPGA内部存储资源的情况下极大提高反正切运算在[0,1)范围的计算精度。反正切运算在自变量为[0,1)的值域为[0,π/4),占自变量在[0,+∞)时对应值域的1/2,故保证其在定义域为[0,1)范围的计算精度对使用复相关算法提取多普勒频移非常重要。对双查找表中数据的截断误差进行了分析,在型号为XC7A35TFGG484-2的FPGA芯片上实现了该多普勒频移提取方法,对其频移提取功能进行了测试验证,证明了双查找表法的实用性以及该频移提取方法的有效性。 展开更多
关键词 频移提取 复相关算法 FPGA 双查找表 反正切运算
在线阅读 下载PDF
多感受野增强的爆破现场安全帽检测算法
12
作者 王新良 王璐莹 《计算机工程与应用》 北大核心 2025年第7期315-324,共10页
针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分... 针对安全帽检测任务中存在的目标面积小、目标被不同程度遮挡、复杂背景干扰目标等问题,提出了基于YOLOX的多感受野增强的安全帽检测算法(multiple receptive field enhancement-YOLOX,MRFE-YOLOX)。在特征融合网络中增加浅层特征融合分支,提升小目标特征信息流通效率,提高了小目标的检测精度;设计基于空洞卷积组与卷积注意力机制的感受野增强模块(receptive field augmentation module,RFAM),捕获了更大范围的感受野和图像特征,改善了遮挡目标漏检率高的问题;根据三分支注意力机制构建特征增强网络(feature enhancement network,FENet),抑制背景噪音对目标区域的干扰,降低了复杂背景下的目标误检率;引入空间到深度卷积(space to depth-conv,SPD-Conv)得到无信息损失的二倍下采样特征图,保留了更多的特征信息,同时减少了模型的参数量。实验结果表明,所提算法的均值平均精度相较于基线算法提升了2.78个百分点,FPS达到了102.67,满足了爆破现场安全帽实时检测的需要。 展开更多
关键词 安全帽检测 yolox-s算法 感受野 空洞卷积 注意力机制
在线阅读 下载PDF
特征增强的低照度爆破现场安全帽检测算法
13
作者 王新良 王璐莹 《计算机工程》 北大核心 2025年第3期252-260,共9页
安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先... 安全帽是保障爆破作业人员人身安全的重要工具。受低照度爆破现场安全帽检测任务中目标视觉信息模糊、图像亮度低及对比度低的影响,在目标检测过程中存在目标漏检、误检等问题。基于YOLOX提出了特征增强的安全帽检测算法FEM-YOLOX。首先,在主干网络使用软池化构建软空间金字塔池化模块(SSPPM),减少了特征映射中的信息弥散,并在下采样映射中保留了更多上下文信息;其次,设计基于高效通道注意力(ECA)机制的高效特征融合模块(EFFM),加强了模型对目标区域特征的学习,提高了特征融合的效率,减少了模型误检情况的出现;再次,采用VariFocalLoss替代BCEWithlogitsLoss,动态调整正负样本的权重,使得模型关注数量较少的正样本,加速了模型的收敛过程,提升了两类目标的检测精度;最后,采用CIoU作为边框回归损失函数,提高了模型定位目标预测框的精度。实验结果表明,所提算法的均值平均精度(mAP)相较于基线算法提升了2.21百分点,每秒处理的图像数量提升了7.67,满足了低照度爆破现场安全帽实时检测的精度和速度需要。 展开更多
关键词 安全帽检测 yolox-s算法 注意力机制 边框回归损失函数 置信度损失函数
在线阅读 下载PDF
基于改进YOLOX算法的X射线图像违禁品检测方法 被引量:4
14
作者 袁金豪 张南峰 +1 位作者 阮洁珊 高向东 《激光技术》 CAS CSCD 北大核心 2023年第4期547-552,共6页
为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,... 为了实现自动检测X射线图像中的违禁品,解决相互遮挡、目标相近和小目标违禁品检测难的问题,提出一种基于改进的你只观察一次(YOLOX)算法的X射线图像违禁品检测方法。首先在YOLOX的主干网络低层中引入使用大核注意力构建的空间注意力,提取低层特征图的远距离依赖信息和纹理信息,之后在主干网络的中层和高层增加卷积块的注意力模块以增强感兴趣区域信息并抑制无用信息;该方法在公开的安全检查X射线数据集上进行实验,同时为改善模型的鲁棒性,在训练前70个周期使用Mosaic数据增强方法。结果表明,改进的模型较基本模型增加少量的参数和计算量,均值平均精度增加2.45%,提升到87.88%,平均推理速率为58.5 frame/s。该研究为即时自动检测X射线图像中违禁品提供了有益的参考。 展开更多
关键词 X射线光学 违禁品检测 yolox算法 大核注意力 空间注意力 卷积块的注意力模块
在线阅读 下载PDF
基于改进YOLOX算法的给水管道内缺陷智能识别与定位 被引量:5
15
作者 苏常旺 胡少伟 +2 位作者 张海丰 潘福渠 单常喜 《测绘通报》 CSCD 北大核心 2023年第12期70-72,73-75,共6页
针对给水管道内缺陷难以快速实时自动化检测的问题,本文基于实际工程项目中采集到的管道缺陷数据集,通过增加注意力模块,得到改进后的新型YOLOX算法模型,从而提出了一种给水管道智能识别与定位方法。利用视频抽帧的方式制作数据集并进... 针对给水管道内缺陷难以快速实时自动化检测的问题,本文基于实际工程项目中采集到的管道缺陷数据集,通过增加注意力模块,得到改进后的新型YOLOX算法模型,从而提出了一种给水管道智能识别与定位方法。利用视频抽帧的方式制作数据集并进行算法模型的训练与预测。测试结果表明:①基于注意力机制的YOLOX算法模型可以达到平均94%的测试精度,均值平均精度达到84%,平均识别速度为16 m/s;②新模型与其他2种常用算法模型(YOLOV3和Fast R-CNN)的训练结果进行对比,其综合性能最好。本文所提出的算法模型同样可以应用于视频实时检测,为给水管道内缺陷智能识别定位提供了一种高效精确的检测技术和方法。 展开更多
关键词 给水管道缺陷 改进yolox算法 注意力机制 识别与定位
在线阅读 下载PDF
基于Swin-Transformer的YOLOX交通标志检测 被引量:4
16
作者 嵇文 刘全金 +3 位作者 黄崇文 杨瑞 黄汇磊 徐光豪 《无线电通信技术》 2023年第3期547-555,共9页
交通标志检测是驾驶辅助系统和自动驾驶系统的关键因素之一。在交通标志检测过程中,交通标志距离不同导致目标尺度变化很大,远距离小尺度交通标志对基于卷积网络的目标检测器提出了巨大挑战。YOLOX-Swin算法将Swin-Transformer作为YOLO... 交通标志检测是驾驶辅助系统和自动驾驶系统的关键因素之一。在交通标志检测过程中,交通标志距离不同导致目标尺度变化很大,远距离小尺度交通标志对基于卷积网络的目标检测器提出了巨大挑战。YOLOX-Swin算法将Swin-Transformer作为YOLOX的骨干网络以提取交通标志图像特征,通过移动窗口获取足够的全局上下文信息,并利用多头自注意力机制提取更多差异化特征;利用YOLOX自身的路径增强特征金字塔网络(Path Aggregation Feature Pyramid Network, PAFPN)提取、融合包括交通标志低层信息在内的多尺度特征信息,提升小目标交通标志检测精度。由于小目标交通标志在图像中所占像素较少,同时考虑到Transformer需要的训练样本多于卷积网络,在原本的复制粘贴法上进行改进,增加交通标志样本数量,以进一步提高交通标志检测精度。在TT100K数据集上的测试结果表明,所提目标检测方法较其他几种方法具有更高的交通标志检测精度,能满足交通标志检测准确性和实时性要求。 展开更多
关键词 深度学习 yolox Swin-Transformer 小目标检测 复制粘贴法
在线阅读 下载PDF
基于TDA4VM的疲劳状态实时检测系统设计
17
作者 付丽 滕召波 +2 位作者 张一帆 罗钧 王浩程 《实验室研究与探索》 CAS 北大核心 2024年第11期26-30,38,共6页
针对传统嵌入式平台疲劳状态检测系统识别精度低和实时性差的问题,设计了一种基于TDA4VM异构多核处理器的疲劳状态实时检测系统。TDA4VM嵌入式处理器通过摄像头获取图像并进行目标检测,STM32微控制器控制外设模块,包括GPS模块、GSM模块... 针对传统嵌入式平台疲劳状态检测系统识别精度低和实时性差的问题,设计了一种基于TDA4VM异构多核处理器的疲劳状态实时检测系统。TDA4VM嵌入式处理器通过摄像头获取图像并进行目标检测,STM32微控制器控制外设模块,包括GPS模块、GSM模块和语音模块。在目标检测算法方面,先在YOLOX目标检测算法中引入注意力机制模块CBAM(Convolutional Block Attention Module),再对激活函数进行改进,并优化小滑窗替换算法。将训练后的YOLOX模型部署在硬件平台上,实际车载实验结果表明,在不同环境下疲劳状态检测精度可达到95.3%,同时还实现了30帧/s的实时检测。该检测系统具备精度高、实时性强和教学简易等特点,在实验教学和工程应用方面具有一定的参考价值。 展开更多
关键词 疲劳检测 深度学习 异构多核 处理器 yolox算法
在线阅读 下载PDF
基于少量标注样本的茶芽目标检测YSVD-Tea算法 被引量:1
18
作者 郑子秋 宋彦 +2 位作者 陈霖 张航 宁井铭 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期301-311,共11页
构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替... 构建大规模茶芽目标检测数据集是一项耗时且繁琐的任务,为了降低数据集构建成本,探索少量标注样本的算法尤为必要。本文提出了YSVD-Tea(YOLO singular value decomposition for tea bud detection)算法,通过将预训练模型中的基础卷积替换为3个连续的矩阵结构,实现了对YOLOX算法结构的重构。通过维度变化和奇异值分解操作,将预训练权重转换为与重构算法结构相对应的权重,从而将需要进行迁移学习的权重和需要保留的权重分离开,实现保留预训练模型先验信息的目的。在3种不同数量的数据集上分别进行了训练和验证。在最小数量的1/3数据集上,YSVD-Tea算法相较于改进前的YOLOX算法,mAP提高20.3个百分点。对比测试集与训练集的性能指标,YSVD-Tea算法在测试集与训练集的mAP差距仅为21.9%,明显小于YOLOX的40.6%和Faster R-CNN的55.4%。在数量最大的数据集上,YOLOX算法精确率、召回率、F1值、mAP分别为86.4%、87.0%、86.7%和88.3%,相较于对比算法均最高。YSVD-Tea在保证良好性能的同时,能够更好地适应少量标注样本的茶芽目标检测任务。 展开更多
关键词 茶芽 目标检测 奇异值分解 少量样本 遗传算法 yolox
在线阅读 下载PDF
YOLO算法及其在自动驾驶场景中目标检测综述 被引量:17
19
作者 邓亚平 李迎江 《计算机应用》 CSCD 北大核心 2024年第6期1949-1958,共10页
自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You On... 自动驾驶场景下的目标检测是计算机视觉中重要研究方向之一,确保自动驾驶汽车对物体进行实时准确的目标检测是研究重点。近年来,深度学习技术迅速发展并被广泛应用于自动驾驶领域中,极大促进了自动驾驶领域的进步。为此,针对YOLO(You Only Look Once)算法在自动驾驶领域中的目标检测研究现状,从以下4个方面分析。首先,总结单阶段YOLO系列检测算法思想及其改进方法,分析YOLO系列算法的优缺点;其次,论述YOLO算法在自动驾驶场景下目标检测中的应用,从交通车辆、行人和交通信号识别这3个方面分别阐述和总结研究现状及应用情况;此外,总结目标检测中常用的评价指标、目标检测数据集和自动驾驶场景数据集;最后,展望目标检测存在的问题和未来发展方向。 展开更多
关键词 目标检测 自动驾驶 实时检测 YOLO算法 交通场景
在线阅读 下载PDF
基于改进Yolov4轻量化水面船只目标检测
20
作者 卢艺 储开斌 +2 位作者 张继 冯成涛 彭敏 《海洋测绘》 CSCD 北大核心 2024年第6期19-23,共5页
针对水面船只目标检测计算量大、检测帧率较低的问题,设计了一个改进Yolov4的网络轻量化算法。首先,提出DWG模块,利用该模块和Ghost卷积构成Yolov4新主干,降低网络模型的大小。其次,在颈部网络前添加SE注意力机制,并将颈部网络简化为FP... 针对水面船只目标检测计算量大、检测帧率较低的问题,设计了一个改进Yolov4的网络轻量化算法。首先,提出DWG模块,利用该模块和Ghost卷积构成Yolov4新主干,降低网络模型的大小。其次,在颈部网络前添加SE注意力机制,并将颈部网络简化为FPN结构,提高检测帧率。最后,引入Mish函数替换原网络的激活函数,并利用Focal Loss对损失函数进行优化。实验结果表明,改进后的算法相比原算法,参数量缩减93.2%,计算量减少95.1%,检测速率提升3.2倍,能够实现水面船只的实时检测。 展开更多
关键词 船只目标检测 轻量化网络 Yolov4算法 Ghost卷积 实时检测
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部