特殊环境下道路目标的三维感知对汽车的全天时、全气候自动驾驶具有重要意义,红外双目视觉模仿人眼实现微光/无光等特殊环境下目标的立体感知,目标检测与匹配是双目视觉立体感知的关键技术。针对当前分步实现目标检测与目标匹配的过程...特殊环境下道路目标的三维感知对汽车的全天时、全气候自动驾驶具有重要意义,红外双目视觉模仿人眼实现微光/无光等特殊环境下目标的立体感知,目标检测与匹配是双目视觉立体感知的关键技术。针对当前分步实现目标检测与目标匹配的过程冗杂问题,提出了一个可以同步检测与匹配红外目标的深度学习网络——SODMNet(Synchronous Object Detection and Matching Network)。SODMNet融合了目标检测网络和目标匹配模块,以目标检测网络为主要架构,取其分类与回归分支深层特征为目标匹配模块的输入,与特征图相对位置编码拼接后通过卷积网络输出左右图像特征描述子,根据特征描述子之间的欧氏距离得到目标匹配结果,实现双目视觉目标检测与匹配。与此同时,采集并制作了一个包含人、车辆等标注目标的夜间红外双目数据集。实验结果表明,SODMNet在该红外双目数据集上的目标检测精度mAP(Mean Average Precision)提升84.9%以上,同时目标匹配精度AP(Average Precision)达到0.5777。结果证明,SODMNet能够高精度地同步实现红外双目目标检测与匹配。展开更多
为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标...为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标在交通场景中的实际意义.对YOLO算法的核心架构进行概述,追溯了该算法的发展历程,分析各个版本迭代中的优化和改进措施.从“人-车-路”3种交通目标的视角出发,梳理并论述了采用YOLO算法进行交通目标检测的研究现状及应用情况.分析目前YOLO算法在交通目标检测中存在的局限性和挑战,提出相应的改进方法,展望未来的研究重点,为道路交通的智能化发展提供了研究参考.展开更多
文摘特殊环境下道路目标的三维感知对汽车的全天时、全气候自动驾驶具有重要意义,红外双目视觉模仿人眼实现微光/无光等特殊环境下目标的立体感知,目标检测与匹配是双目视觉立体感知的关键技术。针对当前分步实现目标检测与目标匹配的过程冗杂问题,提出了一个可以同步检测与匹配红外目标的深度学习网络——SODMNet(Synchronous Object Detection and Matching Network)。SODMNet融合了目标检测网络和目标匹配模块,以目标检测网络为主要架构,取其分类与回归分支深层特征为目标匹配模块的输入,与特征图相对位置编码拼接后通过卷积网络输出左右图像特征描述子,根据特征描述子之间的欧氏距离得到目标匹配结果,实现双目视觉目标检测与匹配。与此同时,采集并制作了一个包含人、车辆等标注目标的夜间红外双目数据集。实验结果表明,SODMNet在该红外双目数据集上的目标检测精度mAP(Mean Average Precision)提升84.9%以上,同时目标匹配精度AP(Average Precision)达到0.5777。结果证明,SODMNet能够高精度地同步实现红外双目目标检测与匹配。
文摘为了综合分析YOLO(You Only Look Once)算法在提升交通安全性和效率方面的重要作用,从“人-车-路”3个核心要素的角度,对YOLO算法在交通目标检测中的发展和研究现状进行系统性地总结.概述了YOLO算法常用的评价指标,详细阐述了这些指标在交通场景中的实际意义.对YOLO算法的核心架构进行概述,追溯了该算法的发展历程,分析各个版本迭代中的优化和改进措施.从“人-车-路”3种交通目标的视角出发,梳理并论述了采用YOLO算法进行交通目标检测的研究现状及应用情况.分析目前YOLO算法在交通目标检测中存在的局限性和挑战,提出相应的改进方法,展望未来的研究重点,为道路交通的智能化发展提供了研究参考.