实时目标检测YOLO(you only look once)算法存在检测精度低和网络模型训练速度慢等问题,对此,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,引入批再规范化处理对YOLO网络结构予以改进,即把卷积层中经卷积运算产生的特征...实时目标检测YOLO(you only look once)算法存在检测精度低和网络模型训练速度慢等问题,对此,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,引入批再规范化处理对YOLO网络结构予以改进,即把卷积层中经卷积运算产生的特征图看做神经元,并对其进行规范化处理。同时,在网络结构中移除dropout,并增大网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度,并且通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。展开更多
针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,...针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,将人脸检测问题转换为回归问题,将待检测的图像均分为S×S个单元格,每个单元格检测落在单元格内的目标。通过修改YOLO网络模型中的卷积神经网络结构,提高其检测的准确性,同时减少网络结构中卷积核的数目,降低模型的大小。实验结果表明,E-YOLO模型大小为43MB,视频的检测帧率为26FPS,在WIDERFACE和FDDB数据集上均有较高的准确率和检测速度,可以实现在嵌入式平台下的实时人脸检测。展开更多
准确的云分类模型对气象监测有重要的意义,传统机器学习云分类模型依赖手工特征提取,容易受噪声数据影响,模型泛化能力较差。深度网络分类模型能自动学习图像深度特征,但是对于图像边缘与细节分类效果不佳。本文针对上述问题进行研究。...准确的云分类模型对气象监测有重要的意义,传统机器学习云分类模型依赖手工特征提取,容易受噪声数据影响,模型泛化能力较差。深度网络分类模型能自动学习图像深度特征,但是对于图像边缘与细节分类效果不佳。本文针对上述问题进行研究。首先提取Himawari-8卫星云图光谱特征、纹理特征用以训练模糊支持向量机(Fuzzy Support Vector Machine,FSVM)模型;同时利用不同通道云图训练深度网络,学习云图深度特征;最后,根据不同模型特性,训练元分类器对各模型输出进行融合,设计了一种基于深度网络与FSVM集成学习的云分类方法,该方法综合不同模型优势,利用不同模型间的互补性提高云分类结果的鲁棒性和可信度。相比单独使用FSVM或深度网络的分类模型,本文集成学习方法在众多评价指标中有更好的表现,平均命中率、平均误报率和平均临界成功指数分别达到0.9245、0.0796、0.8581;与其它云分类模型相比,本文方法也有更好的分类效果;在具体案例测试中也发现,该方法对于不同云类混合区有更高的识别精度,而且能更加准确的识别云团边缘及细节。本文模型能够满足云分类模型稳定可靠、高精度、泛化性能强的要求。展开更多
为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与...为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与划分;然后,改进YOLOv1网络结构,利用全局平均池化替代全连接层,并适当调整网络深度和宽度,设计了一种新的网络;最后,对网络进行检测性能试验和对比分析。结果表明:新网络模型尺寸较原网络大小减少约一半,平均每张图像的检测耗时约0.015s,检测速度显著提升;当测试阶段IOU(Intersection Over Union)阈值为0.1时,模型准确率达到了99%,提出的检测方法可满足木薯收获机精准作业要求。研究可为实时、准确地检测田间木薯茎秆位置提供了一种新的思路和方法,也为仿生挖拔式木薯收获机提供了技术支撑。展开更多
文摘实时目标检测YOLO(you only look once)算法存在检测精度低和网络模型训练速度慢等问题,对此,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,引入批再规范化处理对YOLO网络结构予以改进,即把卷积层中经卷积运算产生的特征图看做神经元,并对其进行规范化处理。同时,在网络结构中移除dropout,并增大网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度,并且通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。
文摘针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,将人脸检测问题转换为回归问题,将待检测的图像均分为S×S个单元格,每个单元格检测落在单元格内的目标。通过修改YOLO网络模型中的卷积神经网络结构,提高其检测的准确性,同时减少网络结构中卷积核的数目,降低模型的大小。实验结果表明,E-YOLO模型大小为43MB,视频的检测帧率为26FPS,在WIDERFACE和FDDB数据集上均有较高的准确率和检测速度,可以实现在嵌入式平台下的实时人脸检测。
文摘准确的云分类模型对气象监测有重要的意义,传统机器学习云分类模型依赖手工特征提取,容易受噪声数据影响,模型泛化能力较差。深度网络分类模型能自动学习图像深度特征,但是对于图像边缘与细节分类效果不佳。本文针对上述问题进行研究。首先提取Himawari-8卫星云图光谱特征、纹理特征用以训练模糊支持向量机(Fuzzy Support Vector Machine,FSVM)模型;同时利用不同通道云图训练深度网络,学习云图深度特征;最后,根据不同模型特性,训练元分类器对各模型输出进行融合,设计了一种基于深度网络与FSVM集成学习的云分类方法,该方法综合不同模型优势,利用不同模型间的互补性提高云分类结果的鲁棒性和可信度。相比单独使用FSVM或深度网络的分类模型,本文集成学习方法在众多评价指标中有更好的表现,平均命中率、平均误报率和平均临界成功指数分别达到0.9245、0.0796、0.8581;与其它云分类模型相比,本文方法也有更好的分类效果;在具体案例测试中也发现,该方法对于不同云类混合区有更高的识别精度,而且能更加准确的识别云团边缘及细节。本文模型能够满足云分类模型稳定可靠、高精度、泛化性能强的要求。
文摘为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与划分;然后,改进YOLOv1网络结构,利用全局平均池化替代全连接层,并适当调整网络深度和宽度,设计了一种新的网络;最后,对网络进行检测性能试验和对比分析。结果表明:新网络模型尺寸较原网络大小减少约一半,平均每张图像的检测耗时约0.015s,检测速度显著提升;当测试阶段IOU(Intersection Over Union)阈值为0.1时,模型准确率达到了99%,提出的检测方法可满足木薯收获机精准作业要求。研究可为实时、准确地检测田间木薯茎秆位置提供了一种新的思路和方法,也为仿生挖拔式木薯收获机提供了技术支撑。