期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
基于YOLO神经网络构建压力性损伤自动检测和分期的人工智能模型 被引量:4
1
作者 王珍妮 须月萍 +2 位作者 夏开建 徐晓丹 顾丽华 《中国全科医学》 CAS 北大核心 2024年第36期4582-4590,共9页
背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的... 背景随着人口老龄化,压力性损伤(PI)的发病率逐渐增加,这不仅严重影响了患者的生存质量,还增加了医保支出。然而,PI的早期发现和准确分期极大地依赖于专业培训。目的构建并测试一个用于PI自动检测和分期的人工智能模型,以提高PI诊断的实时性、准确性和客观性。方法选取常熟市第一人民医院压疮电子化管理系统中2021年1月—2024年2月的693张PI图像,将图像随机划分为训练集(551张)和测试集(142张),并按照2019年美国压疮咨询委员会(NPUAP)制订的PI预防和治疗指南分为6期,包括:Ⅰ期154张、Ⅱ期188张、Ⅲ期160张、Ⅳ期82张、深部组织损伤期57张、不可分期52张。利用基于5种不同版本的YOLOv8[nano(n)、small(s)、medium(m)、large(l)和extra large(x)]神经网络和迁移学习,建立针对PI的深度学习目标检测模型。模型评价指标包括精确度、准确率、灵敏度、特异度及检测速度等。最后,通过Ultralytics Hub平台将模型部署到手机应用程序(App)中,实现AI模型在临床工作中的应用。结果在对包含142张PI图像的测试集进行评估时,YOLOv8l版本在确保高精确度(0.827)的同时,也展现了较快的推理速度(68.49帧/s),与其他YOLO版本相比,在精确度与速度之间取得了最佳的平衡。具体而言,其在所有类别上的整体准确率为93.18%,灵敏度为76.52%,特异度为96.29%,假阳性率为3.72%。在6个PI分期中,模型预测Ⅰ期的准确率最高,达到95.97%;预测Ⅱ期、Ⅲ期、Ⅳ期、深部组织损伤期、不可分期分别取得了91.28%、91.28%、91.95%、95.30%和93.29%的准确率。就处理速度而言,YOLOv8l处理142张图像的总耗时为2.07 s,平均每秒可处理68.49张PI图像。结论基于YOLOv8l网络的AI模型能够快速、准确地对PI进行检测和分期。将该模型部署到手机App中,能够在临床实践中便携使用,具有很大的临床应用潜力。 展开更多
关键词 压力性损伤 人工智能 深度学习 yolo 目标检测 神经网络模型 APP
在线阅读 下载PDF
一种基于YOLO v5的克氏原螯虾性别检测方法
2
作者 孔得溦 李尚 陈义明 《湖南农业科学》 2024年第3期59-63,共5页
针对传统人工判别克氏原螯虾性别效率低、成本高的问题,提出了一种基于YOLO v5的克氏原螯虾性别检测模型,实现了克氏原螯虾性别特征的自动判别。采用自主设计装置拍摄克氏原螯虾图像,使用Labelme工具进行基于雄虾交接器检测和基于区域... 针对传统人工判别克氏原螯虾性别效率低、成本高的问题,提出了一种基于YOLO v5的克氏原螯虾性别检测模型,实现了克氏原螯虾性别特征的自动判别。采用自主设计装置拍摄克氏原螯虾图像,使用Labelme工具进行基于雄虾交接器检测和基于区域特征检测两种方法的数据标注,在Pytorch框架下以Resnet-18为特征提取网络训练二分类模型,基于YOLO v5训练交接器检测和区域特征检测两种模型。结果表明:基于区域特征检测的模型具有较高的检测性能和准确性,能够高效、低成本地提取克氏原螯虾性别特征,对克氏原螯虾品种改良具有重要意义。 展开更多
关键词 yolo v5 目标检测 克氏原螯虾 深度学习 卷积神经网络
在线阅读 下载PDF
基于深度学习的YOLO目标检测综述 被引量:294
3
作者 邵延华 张铎 +2 位作者 楚红雨 张晓强 饶云波 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3697-3708,共12页
目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对Y... 目标检测是计算机视觉领域的一个基础任务和研究热点。YOLO将目标检测概括为一个回归问题,实现端到端的训练和检测,由于其良好的速度-精度平衡,近几年一直处于目标检测领域的领先地位,被成功地研究、改进和应用到众多不同领域。该文对YOLO系列算法及其重要改进、应用进行了详细调研。首先,系统地梳理了YOLO家族及重要改进,包含YOLOv1-v4,YOLOv5,Scaled-YOLOv4,YOLOR和最新的YOLOX。然后,对YOLO中重要的基础网络,损失函数进行了详细的分析和总结。其次,依据不同的改进思路或应用场景对YOLO算法进行了系统的分类归纳。例如,注意力机制、3D、航拍场景、边缘计算等。最后,总结了YOLO的特点,并结合最新的文献分析可能的改进思路和研究趋势。 展开更多
关键词 目标检测 yolo 深度学习 卷积神经网络
在线阅读 下载PDF
基于改进YOLO深度卷积神经网络的缝纫手势检测 被引量:8
4
作者 王晓华 姚炜铭 +2 位作者 王文杰 张蕾 李鹏飞 《纺织学报》 EI CAS CSCD 北大核心 2020年第4期142-148,共7页
在人机协作领域,针对动作手势相似度大,环境复杂背景下手势识别率低的问题,提出一种基于YOLO深度卷积神经网络检测识别缝纫手势的方法。以4种复杂缝纫手势作为检测对象并构建缝纫手势数据集,通过在YOLOv3低分辨率的深层网络处增加密集... 在人机协作领域,针对动作手势相似度大,环境复杂背景下手势识别率低的问题,提出一种基于YOLO深度卷积神经网络检测识别缝纫手势的方法。以4种复杂缝纫手势作为检测对象并构建缝纫手势数据集,通过在YOLOv3低分辨率的深层网络处增加密集连接层,加强图像特征传递与重用提高网络性能,实现端到端的缝纫手势检测。实验结果表明,在缝纫手势测试集中,训练后的模型平均精度均值为94.45%,交并比为0.87,调和平均值为0.885。通过对比区域卷积神经网络、YOLOv2以及原始YOLOv3算法,提出的改进方法检测精度有显著提升;同时在GPU加速情况下,平均检测速度为43.0帧/s,可完全满足缝纫手势的实时检测。 展开更多
关键词 缝纫手势识别 目标检测 yolo深度卷积神经网络 服装缝纫 人机协作
在线阅读 下载PDF
基于改进YOLO V3的钢轨伤损B显图像识别研究 被引量:9
5
作者 何庆 陈正兴 +3 位作者 王启航 王晓明 王平 余天乐 《铁道学报》 EI CAS CSCD 北大核心 2022年第12期82-88,共7页
针对钢轨探伤普遍存在的判伤时间长、漏报率高等问题,提出一种改进的YOLO V3算法。首先对YOLO V3网络结构进行改进,包括增加极小尺度检测层、添加SPP模块和SE模块等,然后对B显图像数据进行数据增强和杂波滤除处理,采用K-means聚类算法... 针对钢轨探伤普遍存在的判伤时间长、漏报率高等问题,提出一种改进的YOLO V3算法。首先对YOLO V3网络结构进行改进,包括增加极小尺度检测层、添加SPP模块和SE模块等,然后对B显图像数据进行数据增强和杂波滤除处理,采用K-means聚类算法对数据集中的边界框进行聚类分析,获得12个先验框;其次对改进的YOLO V3网络进行参数调整,使用B显图像数据集对改进YOLO V3模型进行训练,最终实现对B显图像中的核伤、轨底伤损、表面伤损、异常螺孔四类异常数据集和断面、接头、螺孔、焊缝四类正常数据集的定位和识别功能。试验对17601张B显图片进行检测。结果表明,提出的钢轨伤损识别模型的平均精度为92.3%,检测速度达到44 ms/张,能够较为准确快速地检测钢轨伤损。 展开更多
关键词 钢轨伤损 目标检测 yolo V3 深度学习 卷积神经网络
在线阅读 下载PDF
基于YOLO优化的轻量级目标检测网络 被引量:16
6
作者 许虞俊 李晨 《计算机科学》 CSCD 北大核心 2021年第S02期265-269,共5页
目标检测是计算机视觉领域中一个相当活跃的研究领域,通过设计大型的深度卷积神经网络来提高目标检测的精度是一种十分有效的方法,然而目前在内存受限的应用场景中并不支持部署大型目标检测网。针对以上问题,文中提出了一种基于You Only... 目标检测是计算机视觉领域中一个相当活跃的研究领域,通过设计大型的深度卷积神经网络来提高目标检测的精度是一种十分有效的方法,然而目前在内存受限的应用场景中并不支持部署大型目标检测网。针对以上问题,文中提出了一种基于You Only Look Once(YOLO)系列单镜头目标检测网络设计原则的轻量级目标检测网,融合了GhostNet中的Ghost Module模块,并参考了MobileNet-v3中的通道注意力模块SE(Squeeze-and-Excitation),在卷积块中加入更优的ECA(Efficient Channel Attention)模块可以更好地利用可用的网络容量,使得网络在减少体系结构和计算的复杂度以及提升模型性能之间实现强的平衡;并且采用了Distance-IoU loss来解决检测框定位不准的问题,有效地提升了网络的收敛速度。最终模型的参数数量被压缩到了1.54 MB,小于YOLO Nano(即4.0MB),并且在VOC2007测试集上的mAP达到了72.1%,高于现有的YOLO Nano(即69.1%)。 展开更多
关键词 目标检测 轻量级 yolo深度卷积神经网络 Pascal VOC
在线阅读 下载PDF
基于YOLO模型的红外图像行人检测方法 被引量:16
7
作者 谭康霞 平鹏 秦文虎 《激光与红外》 CAS CSCD 北大核心 2018年第11期1436-1442,共7页
针对基于传统特征提取方法的远红外图像行人检测存在准确率和实时性不足的问题,本文研究了一种基于改进YOLO模型的远红外行人检测方法,通过改进其深度卷积神经网络的输入分辨率,然后在基于实际道路采集的红外数据集上进行训练,得到检测... 针对基于传统特征提取方法的远红外图像行人检测存在准确率和实时性不足的问题,本文研究了一种基于改进YOLO模型的远红外行人检测方法,通过改进其深度卷积神经网络的输入分辨率,然后在基于实际道路采集的红外数据集上进行训练,得到检测效果最佳的检测模型,并提出基于车速的自适应图像分辨率模型,以提高车载系统的行人检测性能。在基于实际道路的红外数据集上的对比实验表明,该方法与传统方法相比,准确率从76. 5%提高到89. 2%,每秒传输帧数从0. 01259 f/s提高到40. 5 f/s,满足车载情况下的实时性需求。 展开更多
关键词 红外图像 行人检测 深度卷积神经网络 yolo
在线阅读 下载PDF
实时目标检测算法YOLO的批再规范化处理 被引量:16
8
作者 温捷文 战荫伟 +1 位作者 凌伟林 郭灿樟 《计算机应用研究》 CSCD 北大核心 2018年第10期3179-3185,共7页
实时目标检测YOLO(you only look once)算法存在检测精度低和网络模型训练速度慢等问题,对此,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,引入批再规范化处理对YOLO网络结构予以改进,即把卷积层中经卷积运算产生的特征... 实时目标检测YOLO(you only look once)算法存在检测精度低和网络模型训练速度慢等问题,对此,结合批再规范化算法处理小批样本以及非独立同分布数据的优势,引入批再规范化处理对YOLO网络结构予以改进,即把卷积层中经卷积运算产生的特征图看做神经元,并对其进行规范化处理。同时,在网络结构中移除dropout,并增大网络训练的学习率。实验结果表明,该改进算法相对于原YOLO算法具有更高的检测精度、更快的实时检测速度,并且通过适当设置批样本大小可使网络模型在训练时间和硬件设备方面成本有一定的降低。 展开更多
关键词 目标检测 深度学习 卷积神经网络 批再规范化 yolo
在线阅读 下载PDF
适用于嵌入式平台的E-YOLO人脸检测网络研究 被引量:7
9
作者 阮有兵 徐海黎 +2 位作者 万旭 邢强 沈标 《计算机应用与软件》 北大核心 2020年第2期147-151,共5页
针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,... 针对现有人脸检测深度学习算法计算量大,难以移植到嵌入式平台,无法满足移动设备实时性和便捷性需求的问题,提出一种基于YOLO(You Only Look Once)算法的适用于嵌入式平台的小型人脸检测网络E-YOLO(Enhance-YOLO)。借鉴YOLO算法的思想,将人脸检测问题转换为回归问题,将待检测的图像均分为S×S个单元格,每个单元格检测落在单元格内的目标。通过修改YOLO网络模型中的卷积神经网络结构,提高其检测的准确性,同时减少网络结构中卷积核的数目,降低模型的大小。实验结果表明,E-YOLO模型大小为43MB,视频的检测帧率为26FPS,在WIDERFACE和FDDB数据集上均有较高的准确率和检测速度,可以实现在嵌入式平台下的实时人脸检测。 展开更多
关键词 深度学习 神经网络 人脸检测 嵌入式 yolo 实时检测
在线阅读 下载PDF
基于YOLO算法的眼底图像视盘定位方法 被引量:6
10
作者 蒋芸 彭婷婷 +1 位作者 谭宁 侯金泉 《计算机工程与科学》 CSCD 北大核心 2019年第9期1662-1670,共9页
视盘的各个参数是衡量眼底健康状况和病灶的重要指标,视盘的检测和定位对于观察视盘的形态尤为重要。在以往的视盘定位研究中,主要根据视盘的形状、亮度、眼底血管的走向等特征使用图像处理的方法对眼底图像中视盘进行定位。由于人为因... 视盘的各个参数是衡量眼底健康状况和病灶的重要指标,视盘的检测和定位对于观察视盘的形态尤为重要。在以往的视盘定位研究中,主要根据视盘的形状、亮度、眼底血管的走向等特征使用图像处理的方法对眼底图像中视盘进行定位。由于人为因素影响较大,特征提取时间较长,且视盘定位效率低,因此提出一种基于YOLO算法的眼底图像视盘定位方法。利用YOLO算法将眼底图像划分为N×N的格子,每个格子负责检测视盘中心点是否落入该格子中,通过多尺度的方式和残差层融合低级特征对视盘进行定位,得到不同大小的边界框,最后通过非极大抑制的方式筛选出得分最高的边界框。通过在3个公开的眼底图像数据集(DRIVE、DRISHTI-GS1和MESSIDOR)上,对所提出的视盘定位方法进行测试,定位准确率均为100%,实验同时定位出视盘的中心点坐标,与标准中心点的平均欧氏距离分别为22.36 px、2.52 px、21.42 px,验证了该方法的准确性和通用性。 展开更多
关键词 视盘 yolo算法 目标检测 深度学习 卷积神经网络
在线阅读 下载PDF
基于DCN-Mobile-YOLO模型的多车道车辆计数 被引量:9
11
作者 文奴 郭仁忠 贺彪 《深圳大学学报(理工版)》 CAS CSCD 北大核心 2021年第6期628-635,共8页
单一目标检测方法无法实现目标计数的准确统计,且模型的检测精度和速度难以同步提升.以YOLO v4目标检测框架为基础,提出一种移动端的目标追踪和多车道车辆计数模型DCN-Mobile-YOLO.使用可变形卷积网络(deformable convolutional network... 单一目标检测方法无法实现目标计数的准确统计,且模型的检测精度和速度难以同步提升.以YOLO v4目标检测框架为基础,提出一种移动端的目标追踪和多车道车辆计数模型DCN-Mobile-YOLO.使用可变形卷积网络(deformable convolutional networks,DCNs)v2卷积核和移动端卷积网络MobileNet v3框架分别代替YOLO v4的常规卷积核和主干网络,结合DeepSORT算法实现对多目标的跟踪和计数,建立自适应车道检测规则并实现车道内车辆的精确计数.在VOC2007+2012数据集和GoPro采集数据上验证DCN-Mobile-YOLO模型的有效性.结果表明,DCN-Mobile-YOLO模型的平均精度均值相比主干网络为MobileNet v3和CSPDarkNet的YOLO v4算法分别提升了13.19%和6.63%,目标检测平均帧率为12帧/s.DCN-Mobile-YOLO模型不仅提高了目标检测模型的检测精度,且达到了移动端实时检测的速度. 展开更多
关键词 人工智能 视频目标检测 多目标跟踪 yolo v4 车流量 深度学习 卷积神经网络 目标计数
在线阅读 下载PDF
基于改进YOLO卷积神经网络的水下海参检测 被引量:9
12
作者 翟先一 魏鸿磊 +1 位作者 韩美奇 黄萌 《江苏农业学报》 CSCD 北大核心 2023年第7期1543-1553,共11页
为了实现水下海参的自动化捕捞,需要利用机器视觉方法实现水下海参的实时检测与定位。本研究提出一种基于改进YOLOv5s的水下海参检测定位方法。针对海参与水下环境对比度较低的问题,引入多尺度视觉恢复算法对图像进行处理,增强图像对比... 为了实现水下海参的自动化捕捞,需要利用机器视觉方法实现水下海参的实时检测与定位。本研究提出一种基于改进YOLOv5s的水下海参检测定位方法。针对海参与水下环境对比度较低的问题,引入多尺度视觉恢复算法对图像进行处理,增强图像对比度;为了提高模型特征提取能力,加入了注意力机制模块;原始模型对YOLOv5s小目标的检测效果不佳,改进后的YOLOv5s模型替换了原有的激活函数,并在Head网络中加入了新的针对小目标的Detect层。使用改进的YOLOv5s模型与YOLOv5s、YOLOv4和Faster-RCNN在相同的图像数据集上进行试验,结果表明,改进的YOLOv5s模型的检测精度和置信度,尤其是对小目标的检测效果优于其他模型。与YOLOv5s模型相比,改进后的YOLOv5s模型的精度和召回率分别提高了9.6个百分点和12.4个百分点,能够满足水下海参的实时检测要求。 展开更多
关键词 yolo 目标检测 深度学习 机器视觉 卷积神经网络
在线阅读 下载PDF
基于视觉传感的热丝激光金属沉积熔滴—熔池多特征信息同步监测
13
作者 李春凯 潘宇 +2 位作者 石玗 王文楷 赵中博 《焊接学报》 EI CAS CSCD 北大核心 2024年第11期115-120,共6页
为了提高热丝激光金属沉积(HW-LMD)过程中的质量稳定性和实现熔滴—熔池多特征信息的同步实时监测,采用基于高动态视觉相机结合YOLO v8深度学习神经网络的高精度实时监控方法,通过相机捕捉HW-LMD过程中的动态变化,并利用YOLO v8神经网... 为了提高热丝激光金属沉积(HW-LMD)过程中的质量稳定性和实现熔滴—熔池多特征信息的同步实时监测,采用基于高动态视觉相机结合YOLO v8深度学习神经网络的高精度实时监控方法,通过相机捕捉HW-LMD过程中的动态变化,并利用YOLO v8神经网络对过渡方式和熔池行为进行同步监测,首先判断沉积过程是否为稳定的液桥过渡,然后在液桥过渡模式下提取熔池尺寸的关键点信息.结果表明,YOLO v8神经网络在检测沉积过程过渡方式和熔池关键点信息方面具有高精确度,精确率分别达到了98.8%和99.9%,熔池宽度的平均误差为4.1%,且推理时间平均仅为12 ms/帧,满足了HWLMD过程实时监控的需求. 展开更多
关键词 热丝激光金属沉积 过程监控 yolo v8深度学习神经网络 熔池尺寸 过渡方式
在线阅读 下载PDF
基于视觉感知的机器人工件识别方法研究 被引量:2
14
作者 崔新霞 卢硕晨 孙敦凯 《包装工程》 CAS 北大核心 2023年第7期186-195,共10页
目的解决定制化木门尺寸规格不统一、表面纹理多样而导致的堆垛分类困难、搬运效率低下等问题。方法提出采用深度学习方法进行定制式木门工件检测,以YOLO V3网络为基本框架开展机器人工件识别方法研究。首先,通过图像数据增强和预处理,... 目的解决定制化木门尺寸规格不统一、表面纹理多样而导致的堆垛分类困难、搬运效率低下等问题。方法提出采用深度学习方法进行定制式木门工件检测,以YOLO V3网络为基本框架开展机器人工件识别方法研究。首先,通过图像数据增强和预处理,扩充定制式木门数据;然后,进行YOLO V3损失函数改进,并根据木门特征进行定制式木门数据集锚框尺度的重新聚类;最后,应用空间金字塔池化层进行YOLO V3中特征金字塔网络改进,并通过随机选取的测试集验证本文方法的有效性。结果测试数据集的平均检测准确率均值达到98.05%,检测每张图片的时间为137 ms。结论研究表明,本文方法能够满足木门生产线对准确率和实时性的要求,可大大提高定制化木门转线及堆垛效率。 展开更多
关键词 视觉感知 目标检测 深度学习 卷积神经网络 yolo V3网络
在线阅读 下载PDF
基于街景影像和深度学习技术的城市流动商贩空间分布制图 被引量:3
15
作者 刘昱辰 陈晓纯 +2 位作者 刘轶伦 吴小芳 陈飞香 《热带地理》 CSCD 北大核心 2023年第6期1098-1110,共13页
流动商贩是城市社会生态系统中不可或缺的组成部分,高效治理流动商贩问题需要全面调查他们的经营规模和空间聚集信息。然而,传统方法在大规模流动商贩信息(尤其是他们的空间分布)的自动调查存在不足。文章提出一种基于街景影像和深度学... 流动商贩是城市社会生态系统中不可或缺的组成部分,高效治理流动商贩问题需要全面调查他们的经营规模和空间聚集信息。然而,传统方法在大规模流动商贩信息(尤其是他们的空间分布)的自动调查存在不足。文章提出一种基于街景影像和深度学习目标识别模型的流动商贩空间分布自动调查方法。按城市路网的固定间隔距离采集街景影像,通过人机交互的方式选取1957张包含一个或以上商贩的图像建立流动商贩标签数据。构建基于YOLO v4深度神经网络的图像目标检测模型识别街景影像库中的流动商贩,模型的平均F1值为0.77、mAP为0.67。精度能满足覆盖城市主要道路的流动商贩数量和位置调查的需要,进而应用核密度分布模型评估流动商贩的空间分布格局。以广州市的街头流动商贩为案例,通过所建立的自动调查模型在3339062幅街景影像中识别出26119名街头商贩,结果表明,流动商贩在中心城区以多中心聚集模式分布,主要集中在地铁站、城中村附近等人流量大的区域,随着道路等级的下降其数量上升,而且流动商贩偏好分布于租金中等的地区。文章提出的方法有助于实现高效、低成本和城市尺度的街头摊贩分布制图,所得结果有助于制定和实施非正规经济的空间治理政策,并进一步为街景图像丰富且开放的城市的空间治理政策的改进和实施提供建议。识别结果可用于对从业者的区位偏好分析、“邻避效应”探究以及疏导区的划定提供决策参考依据。 展开更多
关键词 非正规经济 流动商贩 街景影像 深度学习 yolo深度神经网络 广州
在线阅读 下载PDF
基于轻量化神经网络的目标识别跟踪算法研究 被引量:6
16
作者 曹昭睿 白帆 +1 位作者 刘凤丽 郝永平 《弹箭与制导学报》 北大核心 2020年第1期19-23,共5页
为解决传统目标识别算法对于多尺度、可变速目标的识别性能较差与全尺寸卷积神经网络对硬件计算空间消耗较大的问题,利用轻量化的YOLO卷积神经网络对视频首帧进行目标识别,结合KCF目标跟踪算法与感知哈希算法对完成识别的目标进行跟踪... 为解决传统目标识别算法对于多尺度、可变速目标的识别性能较差与全尺寸卷积神经网络对硬件计算空间消耗较大的问题,利用轻量化的YOLO卷积神经网络对视频首帧进行目标识别,结合KCF目标跟踪算法与感知哈希算法对完成识别的目标进行跟踪与矫正。优化后的算法能够对复杂目标进行实时识别,对于目标自身变化具有较强的自适应能力。能够为同一计算平台下的飞行控制、自主避障、目标测距等后续控制指令提供计算空间。 展开更多
关键词 深度学习 卷积神经网络 yolo KCF跟踪算法 感知哈希算法
在线阅读 下载PDF
基于卷积神经网络的收获期木薯茎秆识别与定位 被引量:1
17
作者 王志浩 李付成 +3 位作者 郑贤 农宏亮 曾伯胜 杨望 《农机化研究》 北大核心 2023年第8期144-148,共5页
为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与... 为解决挖拔式木薯智能收获机械在作业过程需要快速准确地确定茎秆位置的问题,基于YOLO(You only look once)卷积神经网络提出一种检测速率更快且满足准确率的网络设计(CS-YOLO)。首先,采集并扩增木薯茎秆图像数据集,对样本集进行标注与划分;然后,改进YOLOv1网络结构,利用全局平均池化替代全连接层,并适当调整网络深度和宽度,设计了一种新的网络;最后,对网络进行检测性能试验和对比分析。结果表明:新网络模型尺寸较原网络大小减少约一半,平均每张图像的检测耗时约0.015s,检测速度显著提升;当测试阶段IOU(Intersection Over Union)阈值为0.1时,模型准确率达到了99%,提出的检测方法可满足木薯收获机精准作业要求。研究可为实时、准确地检测田间木薯茎秆位置提供了一种新的思路和方法,也为仿生挖拔式木薯收获机提供了技术支撑。 展开更多
关键词 木薯收获 茎秆目标检测 深度学习 yolo 神经网络设计
在线阅读 下载PDF
深度卷积神经网络在辐射环境下核废料检测中的应用 被引量:1
18
作者 向伟 史晋芳 +1 位作者 刘桂华 徐锋 《强激光与粒子束》 EI CAS CSCD 北大核心 2019年第11期135-140,共6页
针对辐射环境下核废料检测准确率低的问题,提出一种基于深度卷积神经网络的辐射环境下核废料检测算法Dense-Dilated-YOLO V3。实验结果表明,Dense-Dilated-YOLO V3在不增加参数的情况下扩大了网络感受野,也有效避免图像信息的损失,同时... 针对辐射环境下核废料检测准确率低的问题,提出一种基于深度卷积神经网络的辐射环境下核废料检测算法Dense-Dilated-YOLO V3。实验结果表明,Dense-Dilated-YOLO V3在不增加参数的情况下扩大了网络感受野,也有效避免图像信息的损失,同时能够在核辐射环境下提取到更多的目标细节特征,对辐射环境下目标检测的准确率可达93.29%,比原算法提高5.53%,召回率可达91.73%,提高了8.28%,有效解决了复杂辐射环境下核废料检测准确率低的问题,为辐射环境下核废料检测提供了新的途径。 展开更多
关键词 深度学习 卷积神经网络 yolo V3 核废料 目标检测
在线阅读 下载PDF
深度学习支持下的地图图片典型地理目标检测 被引量:3
19
作者 王铮 符校 +2 位作者 杜凯旋 刘纪平 车向红 《测绘通报》 CSCD 北大核心 2022年第11期74-74,75-78,共5页
针对地图图片中典型地理目标识别问题,本文首先介绍了两种基于深度学习的目标检测方法(YOLO网络和采用focal loss替换交叉熵损失函数的RetinaNet网络),然后将地图图片分别输入两种神经网络模型中进行训练和测试,最后对目标检测结果进行... 针对地图图片中典型地理目标识别问题,本文首先介绍了两种基于深度学习的目标检测方法(YOLO网络和采用focal loss替换交叉熵损失函数的RetinaNet网络),然后将地图图片分别输入两种神经网络模型中进行训练和测试,最后对目标检测结果进行对比分析。结果表明,RetinaNet网络模型对地图图片进行目标检测的准确率有明显提高,且运行速度依然可达秒级。该地理目标检测方法的高准确度与高效性可在地图审查时节约大量人力、时间成本,为地图内容智能理解及互联网地图监管提供了新的技术参考。 展开更多
关键词 地理目标检测 深度学习 卷积神经网络 yolo网络 RetinaNet网络
在线阅读 下载PDF
基于深度学习的白光-热成像双通道图像识别系统设计 被引量:5
20
作者 白帆 曹昭睿 《科学技术与工程》 北大核心 2018年第21期264-267,共4页
为解决无人机图像自动识别系统对大视场角下小目标的识别准确率及实时性问题,利用深度学习卷积神经网络对热成像-白光联合图像进行目标识别。设计了一种针对具有温度特征的目标物识别系统以及双通道目标候选提名图像识别算法。充分利用... 为解决无人机图像自动识别系统对大视场角下小目标的识别准确率及实时性问题,利用深度学习卷积神经网络对热成像-白光联合图像进行目标识别。设计了一种针对具有温度特征的目标物识别系统以及双通道目标候选提名图像识别算法。充分利用热成像图中目标热源特征的HSV值,将目标物从热成像图中进行筛选、分割。通过Canny算子勾勒目标物轮廓,并标记出目标物大致区域,导入白光图像提取含有目标物的有效图像信息。利用YOLO V2算法对候选图像内目标物进行识别。通过实验表明,提出的双通道目标候选提名图像识别算法具有可行性与实用性,能够在大视场环境下对小目标进行精准快速识别,满足无人机机载系统简易、实时和准确性要求。 展开更多
关键词 深度学习 卷积神经网络 yolo 热成像识别 机器视觉
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部