Due to the importance of riparian zone in maintaining and protecting regional biodiversity, increasingly more ecologists paid their attentions to riparian zone and had been aware of the important effects of riparian z...Due to the importance of riparian zone in maintaining and protecting regional biodiversity, increasingly more ecologists paid their attentions to riparian zone and had been aware of the important effects of riparian zone in basic study and practical management. In this study, 42 sampling belts (10 m?00 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia Area were selected to investigate the riparian vegetation and rare plants. 14 species of rare plants were found distributing in riparian zone, accounting for 42.4% of the total rare plant species in Shennongjia Area. The main distribution range of the 14 rare plant species was the evergreen and deciduous mixed broadleaved forest at elevation of 1200-1800 m, where, species diversity of plant community was the maximum at the moderate elevation. The analysis of TWINSPAN divided the 14 rare species into 3 groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation species group. The analysis of DCA ordination showed similar results to that of TWINSPAN. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out that the important function of riparian zone on rare plant species protection.展开更多
为了研究三峡大坝修建后库区生态环境的变化,探究大坝修建对库区底泥细菌群落结构和多样性的影响,2013年夏季在香溪河回水区(河口、中游)与河流区(上游)依次选取6个采样点,通过构建16S r DNA基因克隆文库,分析底栖微生物群落结构和多样...为了研究三峡大坝修建后库区生态环境的变化,探究大坝修建对库区底泥细菌群落结构和多样性的影响,2013年夏季在香溪河回水区(河口、中游)与河流区(上游)依次选取6个采样点,通过构建16S r DNA基因克隆文库,分析底栖微生物群落结构和多样性的变化规律。结果表明,香溪河调查水域共检出细菌类群15门、87属。在门水平上,回水区和河流区的优势菌门均为变形菌门;在属水平上,回水区和河流区的优势菌属存在显著差异(P<0.05),很可能是由于受长江回水和支流高岚河影响所致。芽孢杆菌属所占的比例,从回水区的河口处至中游处逐渐减少至河流区消失,结合芽孢杆菌属易生活在底泥深处的特性,很可能由于大坝的修建,香溪河的上游(即河流区)底泥冲刷至下游(即回水区)河段,被三峡大坝拦截而沉积下来,导致越靠近大坝处,芽孢杆菌属的含量越高。在底泥细菌群落多样性中,Simpson、Shannon和Margalef多样性指数空间分布总体上呈"中间高、两头低"的规律;3种多样性指数最高的采样点均出现在回水区,且回水区的多样性指数均高于河流区,很可能是因其还与旧州河、卜庄河以及周溪河这些支流的交汇,导致河流区底泥细菌群落多样性不稳定。三峡大坝对香溪河底栖微生物的群落结构和多样性产生了显著影响,而大坝修建导致库区回水区水深增加、流速降低、底层水温变化、泥沙沉积增加等因素是造成这种差异的可能原因。展开更多
基金This project was supported by National Natural Science Foundation of China (NSFC39970123) Changbai Mountain Open Research Station, Chinese Acedamy of Science.
文摘Due to the importance of riparian zone in maintaining and protecting regional biodiversity, increasingly more ecologists paid their attentions to riparian zone and had been aware of the important effects of riparian zone in basic study and practical management. In this study, 42 sampling belts (10 m?00 m) parallel to the bank of Xiangxi River at different elevations in Shennongjia Area were selected to investigate the riparian vegetation and rare plants. 14 species of rare plants were found distributing in riparian zone, accounting for 42.4% of the total rare plant species in Shennongjia Area. The main distribution range of the 14 rare plant species was the evergreen and deciduous mixed broadleaved forest at elevation of 1200-1800 m, where, species diversity of plant community was the maximum at the moderate elevation. The analysis of TWINSPAN divided the 14 rare species into 3 groups against the elevation, namely low elevation species group, moderate elevation species group, and high elevation species group. The analysis of DCA ordination showed similar results to that of TWINSPAN. In the paper, the authors discussed the reasons forming the distribution pattern of rare plant species, and pointed out that the important function of riparian zone on rare plant species protection.
文摘为了研究三峡大坝修建后库区生态环境的变化,探究大坝修建对库区底泥细菌群落结构和多样性的影响,2013年夏季在香溪河回水区(河口、中游)与河流区(上游)依次选取6个采样点,通过构建16S r DNA基因克隆文库,分析底栖微生物群落结构和多样性的变化规律。结果表明,香溪河调查水域共检出细菌类群15门、87属。在门水平上,回水区和河流区的优势菌门均为变形菌门;在属水平上,回水区和河流区的优势菌属存在显著差异(P<0.05),很可能是由于受长江回水和支流高岚河影响所致。芽孢杆菌属所占的比例,从回水区的河口处至中游处逐渐减少至河流区消失,结合芽孢杆菌属易生活在底泥深处的特性,很可能由于大坝的修建,香溪河的上游(即河流区)底泥冲刷至下游(即回水区)河段,被三峡大坝拦截而沉积下来,导致越靠近大坝处,芽孢杆菌属的含量越高。在底泥细菌群落多样性中,Simpson、Shannon和Margalef多样性指数空间分布总体上呈"中间高、两头低"的规律;3种多样性指数最高的采样点均出现在回水区,且回水区的多样性指数均高于河流区,很可能是因其还与旧州河、卜庄河以及周溪河这些支流的交汇,导致河流区底泥细菌群落多样性不稳定。三峡大坝对香溪河底栖微生物的群落结构和多样性产生了显著影响,而大坝修建导致库区回水区水深增加、流速降低、底层水温变化、泥沙沉积增加等因素是造成这种差异的可能原因。