Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As...Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.展开更多
A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser ...A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.展开更多
[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,...[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。展开更多
Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often ...Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.展开更多
Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especial...Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especially continuous wave(CW)THz near-field scanning microscopy(THz-SNOM)with its nanoscale reso⁃lution,can be promising in biomedical imaging.In addition,compared with traditional THz time-domain spec⁃troscopy(TDS),portable solid-state source as the emission has higher power and SNR,lower cost,and can ob⁃tain more precise imaging.In this study,we employ CW THz-SNOM to further break the resolution limitations of conventional THz imaging techniques and successfully achieve the near-field imaging of demineralized enamel at the nanoscale.We keenly observe that the near-field signal of the enamel significantly lowers as demineralization deepens,mainly due to the decrease in permittivity.This new approach offers valuable insights into the micro⁃scopic processes of enamel demineralization,laying the foundation for further research and treatment.展开更多
对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面...对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面积、周长、紧致度、籽粒长度、宽度、偏斜度、种子腹沟长度),提出了一种使用Kernel-ICA的方法先对特征进行优化,再进行小麦品种的聚类与识别的方法,并与K-means、C-means 2种聚类方法以及基于工神经网络(ANN)和支持向量机(SVM)2种识别方法的分类结果进行比较,结果发现:分类正确率从高到低分别为:Kernel-ICA、SVM、C-means、K-means、BP-ANN,分类正确率分别为:91.9%、90.5%、89.5%、87.1%、86.9%。研究提出的Kernel-ICA的方法,聚类优化和识别能力较强,对软X-ray成像的小麦品种进行分类,已基本上满足农艺上对小麦品种分类需要,对农作物种质资源鉴别和作物品种分类研究具有积极意义。展开更多
基金supported by the Fundamental Research Funds for the Central Universities(WK2310000102)。
文摘Hefei Light Source(HLS)is a synchrotron radiation light source that primarily produces vacuum ultraviolet and soft X-rays.It currently consists of ten experimental stations,including a soft X-ray microscopy station.As part of its on-going efforts to establish a centralized scientific data management platform,HLS is in the process of developing a test sys-tem that covers the entire lifecycle of scientific data,including data generation,acquisition,processing,analysis,and de-struction.However,the instruments used in the soft X-ray microscopy experimental station rely on commercial propriet-ary software for data acquisition and processing.We developed a semi-automatic data acquisition program to facilitate the integration of soft X-ray microscopy stations into a centralized scientific data management platform.Additionally,we cre-ated an online data processing platform to assist users in analyzing their scientific data.The system we developed and de-ployed meets the design requirements,successfully integrating the soft X-ray microscopy station into the full lifecycle management of scientific data.
文摘A new interferometer for extreme ultraviolet (EUV) radiation with a laser produced plasma (LPP) laboratory source is under construction. The LPP source is operated with a Sn solid rod target on which pulsed YAG laser is focused to produce high temperature plasma emitting EUV radiation. The source is equipped with a newly designed debris stopper protecting a condenser multilayer mirror from the particle debris of the target. The condenser mirror focuses the light onto an EUV beam-splitter to form transmitted and reflected paths for producing interference fringes of a sharing type. The optical configuration is of a common path based on a triangular path type with a focusing at the beam-splitter, which is enabled to produce fringes by a low coherence radiation with a standard optical quality beam-splitter. The fringes are recorded by an imaging plate with pixels as small as 25μm. The dynamic range of linearity in detection of the EUV light was found to be more than 10 4 with sensitivity of 10 4 photons/pixel, enough for the purpose of interferogram recording, possibly with one laser shot.
文摘[目的/意义]苹果“冰糖心”又称水心病,是一种常见的果实病害,严重的水心病果会随着储藏时间的增加发生霉变,造成食品安全隐患。为实现不同等级水心病苹果快速无损检测,本研究旨在构建有效的分级与可溶性固形物(Soluble Solids Content,SSC)预测模型。[方法]本研究选取了230个富士苹果,其中正常、轻度、中度、重度水心苹果数量分别为113、61、47和9个,分别采集了400~1000 nm范围的反射光谱和X射线计算机断层成像(X-ray Computed Tomography,X-ray CT)数据,并测定了SSC含量。[结果和讨论]SSC随水心程度加剧呈上升趋势,重度水心苹果呈现更高的光谱反射率,X-ray CT扫描成像观察到水心区域的组织体积平均密度高于健康组织,基于三维重建算法实现不同等级水心苹果内部水心组织可视化分布。基于偏最小二乘判别分析(Partial Least Squares Discriminant Analysis,PLSDA)构建的不同水心程度苹果果实分级模型建模集和测试集准确率分别为98.7%和95.9%;构建不同水心程度苹果果实SSC回归模型,校正集决定系数(Correlation Coefficient of Calibration,R_(C)^(2))为0.962,均方根误差(Root Mean Squares Error of Calibration,RMSEC)为0.264,测试集决定系数(Correlation Coefficient of Prediction,R_(P)^(2))为0.879,均方根误差(Root Mean Squares Error of Prediction,RMSEP)为0.435。[结论]该研究构建的不同水心程度苹果果实分级模型能够实现苹果不同等级水心病的预测,构建的不同水心程度苹果果实SSC回归模型能够较好地预测苹果果实的SSC,为苹果水心病无损检测和品质评估提供了有效方法。
基金supported by the Project of Health Committee of Hunan Province(D202304128868),China.
文摘Objective:Verrucous epidermal nevus(VEN),seborrheic keratosis(SK),verruca plana(VP),verruca vulgaris(VV),and nevus sebaceous(NS)are common verrucous proliferative skin diseases with similar clinical appearances,often posing diagnostic challenges.Dermoscopy and reflectance confocal microscopy(RCM)can aid in their differentiation,yet their specific features under these tools have not been systematically described.This study aims to summarize and analyze the dermoscopic and RCM features of VEN,SK,VP,VV,and NS.Methods:A total of 121 patients with histopathologically confirmed verrucous proliferative skin diseases were enrolled.Dermoscopy and RCM imaging was used to observe and analyze the microscopic features of these conditions.Results:Under dermoscopy,the 5 diseases displayed distinct characteristics:VEN typically showed gyriform structures;SK was characterized by gyriform structures,comedo-like openings,and milia-like cysts;VP and VV featured dotted vessels and frogspawn-like structures;NS presented as brownish-yellow globules.RCM revealed shared features such as hyperkeratosis and acanthosis across all 5 diseases.Specific features included gyriform structures and elongated rete ridges in VEN;pseudocysts and gyriform structures in SK;evenly distributed ring-like structures in VP;vacuolated cells and papillomatous proliferation in VV;and frogspawn-like structures in NS.Conclusion:These 5 verrucous proliferative skin conditions exhibit distinguishable features under both dermoscopy and RCM.The combination of these 2 noninvasive imaging modalities holds significant clinical value for the differential diagnosis of verrucous proliferative skin diseases.
基金Supported by the National Natural Science Foundation of China(61988102,62401113,92463308)。
文摘Enamel demineralization often occurs in the early stage of dental caries.Studying the microscopic mechanism of enamel demineralization is essential to prevent and treat dental caries.Terahertz(THz)technolo⁃gy,especially continuous wave(CW)THz near-field scanning microscopy(THz-SNOM)with its nanoscale reso⁃lution,can be promising in biomedical imaging.In addition,compared with traditional THz time-domain spec⁃troscopy(TDS),portable solid-state source as the emission has higher power and SNR,lower cost,and can ob⁃tain more precise imaging.In this study,we employ CW THz-SNOM to further break the resolution limitations of conventional THz imaging techniques and successfully achieve the near-field imaging of demineralized enamel at the nanoscale.We keenly observe that the near-field signal of the enamel significantly lowers as demineralization deepens,mainly due to the decrease in permittivity.This new approach offers valuable insights into the micro⁃scopic processes of enamel demineralization,laying the foundation for further research and treatment.
文摘对农作物品种正确分类是作物分类学的重要内容,为考察X-ray成像技术对小麦品种分类研究的有效性,基于软X-ray成像仪采集的3品种(Kama,Rosa and Canadian)每个品种70个籽粒,共210个籽粒样本的X-ray扫描图像,并针对其7个形态几何特征(面积、周长、紧致度、籽粒长度、宽度、偏斜度、种子腹沟长度),提出了一种使用Kernel-ICA的方法先对特征进行优化,再进行小麦品种的聚类与识别的方法,并与K-means、C-means 2种聚类方法以及基于工神经网络(ANN)和支持向量机(SVM)2种识别方法的分类结果进行比较,结果发现:分类正确率从高到低分别为:Kernel-ICA、SVM、C-means、K-means、BP-ANN,分类正确率分别为:91.9%、90.5%、89.5%、87.1%、86.9%。研究提出的Kernel-ICA的方法,聚类优化和识别能力较强,对软X-ray成像的小麦品种进行分类,已基本上满足农艺上对小麦品种分类需要,对农作物种质资源鉴别和作物品种分类研究具有积极意义。