The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millise...The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.展开更多
Perovskite solar cells (PSCs) employing formamidinium lead iodide (FAPbI_(3)) have shown high efficiency.However,operational stability has been issued due to phase instability of α phase FAPbI_(3) at ambient temperat...Perovskite solar cells (PSCs) employing formamidinium lead iodide (FAPbI_(3)) have shown high efficiency.However,operational stability has been issued due to phase instability of α phase FAPbI_(3) at ambient temperature.Excess precursors in the perovskite precursor solution has been proposed to improve not only power conversion efficiency (PCE) but also device stability.Nevertheless,there is a controversial issue on the beneficial effect on PCE and/or stability between excess FAI and excess PbI_(2).We report here extended X-ray absorption fine structure (EXAFS) of FAPbI_(3) to study local structural change and explain the effect of excess precursors on photovoltaic performance and stability.Perovskite films prepared from the precursor solution with excess PbI_(2)shows better stability than those from the one with excess FAI,despite similar PCE.A rapid phase transition from α phase to non-perovskite δ phase is observed from the perovskite film formed by excess FAI.Furthermore,the (Pb-I) bond distance evaluated by the Pb L_(III)-edge EXAFS study is increased by excess FAI,which is responsible for the phase transition and poor device stability.This work can provide important insight into local structure-stability relation in the FAPbI_(3)-based PSCs.展开更多
Effect of structure parameter n and its coupling with the connection mode among RuO6 octahedra of Srn+1RUnO3n+1 (n = 1, 2, ∞) are investigated. The gradually enhanced rotation and tilting effect with increasing n...Effect of structure parameter n and its coupling with the connection mode among RuO6 octahedra of Srn+1RUnO3n+1 (n = 1, 2, ∞) are investigated. The gradually enhanced rotation and tilting effect with increasing n are observed in Srn+1RUnO3n+1. Besides, the chemical valence of Ru is not changed, while the one of Sr gradually varies with increasing n, which highlights the great contribution of connection mode to the chemical environment. Our results show a strong n dependence on the connection mode between octahedra in Srn+1RUnO3n+1 (n = 1, 2, ∞).展开更多
X-ray absorption fine structure (XAFS) has experienced a rapid development in the last three decades and has proven to be a powerful structural characterization technique nowadays. In this review, the XAFS basic princ...X-ray absorption fine structure (XAFS) has experienced a rapid development in the last three decades and has proven to be a powerful structural characterization technique nowadays. In this review, the XAFS basic principles including the theory, the data analysis, and the experiments have been introduced in detail. To show its strength as a local structure probe, the XAFS applications in semiconductors are summarized comprehensively, that is, thin films, quantum wells and dots, dilute magnetic semiconductors, and so on. In addition, certain new XAFS-related techniques, such as in-situ XAFS, micro-XAFS, and time-resolved XAFS are also shown.展开更多
Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific c...Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.展开更多
In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offeri...In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.展开更多
The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS s...The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.展开更多
用 XAFS(X-ray absorption fine structure)分析了由溶胶-凝胶、液相浸渍和化学气相沉积等三种方法制备的二氧化钛和二氧化硅复合氧化物的 Ti K 边结构.结果表明:溶胶-凝胶法制得的复合氯化物中的钛分散很好,液相浸渍法次之,而化学...用 XAFS(X-ray absorption fine structure)分析了由溶胶-凝胶、液相浸渍和化学气相沉积等三种方法制备的二氧化钛和二氧化硅复合氧化物的 Ti K 边结构.结果表明:溶胶-凝胶法制得的复合氯化物中的钛分散很好,液相浸渍法次之,而化学气相沉积法最差,不论哪种方法,随钛含量(或钛硅原子比)的增加,边前特征峰 A2降低,钛的第一配位层 Ti-O 的配位数和键长增加;在复合载体中既有钛中心对称的八面体6配位 TiO_6的结构也有钛中心对称性差的四面体4配位 TiO_4或五面体5配位结构,并且随钛含量增加,钛的局域结构越来越接近锐钛矿型二氧化钛,根据 XAFS、XRD、IR 表征结果,提出了钛硅复合氧化物模型。展开更多
由于X射线吸收精细结构(X—rayabsorption fine structure,XAFS)可以原位探测吸收原子的2~3个邻近配位壳层,获得目标元素的电子结构信息和化学结构信息,所以XAFS已成为微观领域最重要的结构分析工具,丰富了我们对元素的重要化学...由于X射线吸收精细结构(X—rayabsorption fine structure,XAFS)可以原位探测吸收原子的2~3个邻近配位壳层,获得目标元素的电子结构信息和化学结构信息,所以XAFS已成为微观领域最重要的结构分析工具,丰富了我们对元素的重要化学性质和反应过程的认识。本文简述了XAFS的基本原理,探讨了样品制备、测试及数据分析等过程需关注的问题,重点综述了应用XAFS研究土壤重金属和营养元素的形态、土壤固一液界面的反应过程和机理,并指出其应用的局限性和未来发展的前景,旨在推动我国XAFS在土壤科学中的应用。由于土壤中界面反应的复杂性,XAFS应结合其他结构分析技术,结构分析技术应结合宏观数据和计算机模拟,土壤学应与其他学科交叉、融合,只有这样,才有可能在时间和空间尺度上阐明土壤组分在环境界面上的复杂反应过程和机理。展开更多
A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorp...A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure(EXAFS) and x-ray absorption near edge structure(XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron–lattice interaction was mainly elaborated to understand the superconductivity of Sr_2 CuO_(3+δ).展开更多
Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs wit...Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined<100> ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TMdependent structural changes in a series of TM-PBAs during the charging and discharging processes.During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex([Fe(CN)_(6)]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe^(3+/2+) ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials.展开更多
Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectrosc...Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and its X-ray absorption fine structure. It is found that the solubility of substitutional Mn in a ZnO lattice is very low, which is less than 0.4%. Mn ions first dissolve into the substitutional sites in the ZnO lattice, thereby forming Mn2+O4 tetrahedral coordination when x ≤ 0.001, then entering into the interstitial sites and forming Mn3+O6 octahedral coordination when x ≥ 0.005. All the samples exhibit paramagnetic behaviors at room temperature, and antiferromagnetic coupling can be observed below 100 K.展开更多
In this paper neutron diffraction experiments were performed for Fe-substituted Mn12 in order to determine the sites of Fe atoms. The results of structure refinements for the sample with our accessed highest Fe conten...In this paper neutron diffraction experiments were performed for Fe-substituted Mn12 in order to determine the sites of Fe atoms. The results of structure refinements for the sample with our accessed highest Fe content showed that all Fe atoms occupied Mn(3) sites in the Mn12 skeleton. The x-ray absorption fine structure experiments as well as multiple scattering simulations gave the same result. Thus we concluded that Fe atoms only occupied Mn(3) sites. This conclusion also means that Fe-substituted Mn12 series only includes the four single-molecule magnets of [Mn12-xFexO12(CH3COO)16(H2O)4]·2CH3COOH·4H2O (x = 1, 2, 3, and 4), denoted by Mn11Fe1, Mn10Fe2, MngFe3, and Mn8Fe4, respectively.展开更多
This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagn...This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16 μB/Co2+) in the Zno.95 Co0.05 O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65 μB/Co2+) at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.展开更多
Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO...Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.展开更多
Lithium-and manganese-rich(LMR)oxide cathode materials are among the most attractive candidates for next-generation energy-storage materials owing to their anomalous capacity.However,severe Mn dissolution that occurs ...Lithium-and manganese-rich(LMR)oxide cathode materials are among the most attractive candidates for next-generation energy-storage materials owing to their anomalous capacity.However,severe Mn dissolution that occurs during long-term cycling,which leads to capacity loss,hinders their application prospects.In this study,nanoscale AlPO_(4)-coated Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LMR@APO)with significantly enhanced electrochemical performance is successfully synthesized using a simple and effective sol–gel method to mitigate Mn dissolution and suppress local structural distortion at high voltages.Because of the complex evolution of the structure and oxidation state of LMR materials during electrochemical cycling,observing and analyzing them using traditional single characterization methods may be difficult.Therefore,we combine various synchrotron-based characterization techniques to conduct a detailed analysis of the electronic and coordination structures of the cathode material from the surface to the bulk.Synchrotron-based hard and soft X-ray spectroscopies are integrated to investigate the differences in O and Mn evolution between the surfaces and bulk of the cathode.Advanced synchrotron-based transmission X-ray microscopy combined with X-ray near-edge absorption-structure technology is utilized to visualize the two-dimensional nanometer-scale reactivity of the LMR cathode.The AlPO_(4)-coating layer can stabilize the surface structure of the LMR material,effectively alleviating irreversible oxygen release on the surface and preventing the dissolution of Mn^(2+)at the interface caused by side reactions after a long cycle.Therefore,the spatial reaction uniformity of Mn is enhanced by the AlPO_(4)-coating layer,and rapid capacity decay caused by Mn deactivation is prevented.The AlPO_(4)-coating method is a facile modification strategy for high-performance LMR materials.展开更多
文摘The layout and characteristics of the hard X-ray spectroscopy beamline(BL11B)at the Shanghai synchrotron radiation facility are described herein.BL11B is a bending-magnet beamline dedicated to conventional and millisecond-scale quick-scanning X-ray absorption fine structures.It is equipped with a cylindrical collimating mirror,a double-crystal monochromator comprising Si(111)and Si(311),a channel-cut quick-scanning Si(111)monochromator,a toroidal focusing mirror,and a high harmonics rejection mirror.It can provide 5-30 keV of X-rays with a photon flux of~5×10^(11)photons/s and an energy resolution of~1.31×10^(-4)at 10 keV.The performance of the beamline can satisfy the demands of users in the fields of catalysis,materials,and environmental science.This paper presents an overview of the beamline design and a detailed description of its performance and capabilities.
基金supported by the(NRF)grants funded by the Ministry of Science,the ICT Future Planning(MSIP)of Korea under NRF-2016M3D1A1027663,NRF-2016M3D1A1027664(Future Materials Discovery Program),and NRF-2021R1A3B1076723(Research Leader Program)。
文摘Perovskite solar cells (PSCs) employing formamidinium lead iodide (FAPbI_(3)) have shown high efficiency.However,operational stability has been issued due to phase instability of α phase FAPbI_(3) at ambient temperature.Excess precursors in the perovskite precursor solution has been proposed to improve not only power conversion efficiency (PCE) but also device stability.Nevertheless,there is a controversial issue on the beneficial effect on PCE and/or stability between excess FAI and excess PbI_(2).We report here extended X-ray absorption fine structure (EXAFS) of FAPbI_(3) to study local structural change and explain the effect of excess precursors on photovoltaic performance and stability.Perovskite films prepared from the precursor solution with excess PbI_(2)shows better stability than those from the one with excess FAI,despite similar PCE.A rapid phase transition from α phase to non-perovskite δ phase is observed from the perovskite film formed by excess FAI.Furthermore,the (Pb-I) bond distance evaluated by the Pb L_(III)-edge EXAFS study is increased by excess FAI,which is responsible for the phase transition and poor device stability.This work can provide important insight into local structure-stability relation in the FAPbI_(3)-based PSCs.
文摘Effect of structure parameter n and its coupling with the connection mode among RuO6 octahedra of Srn+1RUnO3n+1 (n = 1, 2, ∞) are investigated. The gradually enhanced rotation and tilting effect with increasing n are observed in Srn+1RUnO3n+1. Besides, the chemical valence of Ru is not changed, while the one of Sr gradually varies with increasing n, which highlights the great contribution of connection mode to the chemical environment. Our results show a strong n dependence on the connection mode between octahedra in Srn+1RUnO3n+1 (n = 1, 2, ∞).
基金Supported by National Natural Science Foundation of China (Grant No. 10375059,10404023)the Cooperation Program between NSRL and BSRF+1 种基金the Innova-tion Program of Chinese Academy of Sciences Specialized Research Fund for the Doctoral Program of Higher Education.
文摘X-ray absorption fine structure (XAFS) has experienced a rapid development in the last three decades and has proven to be a powerful structural characterization technique nowadays. In this review, the XAFS basic principles including the theory, the data analysis, and the experiments have been introduced in detail. To show its strength as a local structure probe, the XAFS applications in semiconductors are summarized comprehensively, that is, thin films, quantum wells and dots, dilute magnetic semiconductors, and so on. In addition, certain new XAFS-related techniques, such as in-situ XAFS, micro-XAFS, and time-resolved XAFS are also shown.
基金National Key Research and Development Program of China(2020YFA0405800)National Natural Science Foundation of China(12322515,U23A20121,12225508)+2 种基金Youth Innovation Promotion Association of CAS(2022457)National Postdoctoral Program for Innovative Talents(BX20230346)China Postdoctoral Science Foundation(2023M743365)。
文摘Due to their high electrical conductivity and layered structure,two dimensional MXene materials are re⁃garded as promising candidates for energy storage applications.However,the relatively low stability and specific ca⁃pacity of MXene materials limit their further utilization.In this study,these issues are addressed using a heterostruc⁃ture strategy via a one-step selenization method to form Mo_(2)C@MoSe_(2).Synchrotron radiation X-ray spectroscopic and high-resolution transmission electron microscopy(HRTEM)characterizations revealed the heterostructure consisting of in-situ grown MoSe_(2)on Mo_(2)C MXene.Electrochemical tests proved the heterojunction electrode’s superior rate perfor⁃mance of 289.06 mAh·g^(-1)at a high current density of 5 A·g^(-1)and long cycling stability of 550 mAh·g^(-1)after 900 cycles at 1 A·g^(-1).This work highlights the useful X-ray spectroscopic analysis to directly elucidate the heterojunction structure,providing an effective reference method for probing heterostructures.
基金supported by start-up funds from the laboratory of H.WFaculty Sponsored Student Research Awards(FSSRA)from the Department of Chemistry and Biochemistry in the College of Science and Mathematics at California State University,Fresno。
文摘In addition to the tens of millions of medical doses consumed annually around the world,a vast number of nuclear magnetic resonance imaging(MRI)contrast agents are being deployed in MRI research and development,offering precise diagnostic information,targeting capabilities,and analyte sensing.Superparamagnetic iron oxide nanoparticles(SPIONs)are notable among these agents,providing effective and versatile MRI applications while also being heavy-metal-free,bioconjugatable,and theranostic.We designed and implemented a novel two-pronged computational and experimental strategy to meet the demand for the efficient and rigorous development of SPION-based MRI agents.Our MATLAB-based modeling simulation and magnetic characterization revealed that extremely small maghemite SPIONs in the 1-3 nm range possess significantly reduced transversal relaxation rates(R_(2))and are therefore preferred for positive(T_(1)-weighted)MRI.Moreover,X-ray diffraction and X-ray absorption fine structure analyses demonstrated that the diffraction pattern and radial distribution function of our SPIONs matched those of the targeted maghemite crystals.In addition,simulations of the X-ray near-edge structure spectra indicated that our synthesized SPIONs,even at 1 nm,maintained a spherical structure.Furthermore,in vitro and in vivo MRI investigations showed that our 1-nm SPIONs effectively highlighted whole-body blood vessels and major organs in mice and could be cleared through the kidney route to minimize potential post-imaging side effects.Overall,our innovative approach enabled a swift discovery of the desired SPION structure,followed by targeted synthesis,synchrotron radiation spectroscopic studies,and MRI evaluations.The efficient and rigorous development of our high-performance SPIONs can set the stage for a computational and experimental platform for the development of future MRI agents.
基金Project supported by the Shandong Provincial Natural Science Foundation,China(Grant Nos.ZR2022MA025 and ZR2020MA077).
文摘The possible configurations of pyrrole absorbed on a Si(100)surface have been investigated by x-ray photoelectron spectroscopy(XPS)and near-edge x-ray absorption fine structure(NEXAFS)spectra.The C-1s XPS and NEXAFS spectra of these adsorption configurations have been calculated by using the density functional theory(DFT)method and fullcore hole(FCH)approximation to investigate the relationship between the adsorption configurations and the spectra.The result shows that the XPS and NEXAFS spectra are structurally dependent on the configurations of pyrrole absorbed on the Si(100)surface.Compared with the XPS,the NEXAFS spectra are relatively sensitive to the adsorption configurations and can accurately identify them.The NEXAFS decomposition spectra produced by non-equivalent carbon atoms have also been calculated and show that the spectral features vary with the diverse types of carbon atoms and their structural environments.
文摘用 XAFS(X-ray absorption fine structure)分析了由溶胶-凝胶、液相浸渍和化学气相沉积等三种方法制备的二氧化钛和二氧化硅复合氧化物的 Ti K 边结构.结果表明:溶胶-凝胶法制得的复合氯化物中的钛分散很好,液相浸渍法次之,而化学气相沉积法最差,不论哪种方法,随钛含量(或钛硅原子比)的增加,边前特征峰 A2降低,钛的第一配位层 Ti-O 的配位数和键长增加;在复合载体中既有钛中心对称的八面体6配位 TiO_6的结构也有钛中心对称性差的四面体4配位 TiO_4或五面体5配位结构,并且随钛含量增加,钛的局域结构越来越接近锐钛矿型二氧化钛,根据 XAFS、XRD、IR 表征结果,提出了钛硅复合氧化物模型。
文摘由于X射线吸收精细结构(X—rayabsorption fine structure,XAFS)可以原位探测吸收原子的2~3个邻近配位壳层,获得目标元素的电子结构信息和化学结构信息,所以XAFS已成为微观领域最重要的结构分析工具,丰富了我们对元素的重要化学性质和反应过程的认识。本文简述了XAFS的基本原理,探讨了样品制备、测试及数据分析等过程需关注的问题,重点综述了应用XAFS研究土壤重金属和营养元素的形态、土壤固一液界面的反应过程和机理,并指出其应用的局限性和未来发展的前景,旨在推动我国XAFS在土壤科学中的应用。由于土壤中界面反应的复杂性,XAFS应结合其他结构分析技术,结构分析技术应结合宏观数据和计算机模拟,土壤学应与其他学科交叉、融合,只有这样,才有可能在时间和空间尺度上阐明土壤组分在环境界面上的复杂反应过程和机理。
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB922004/3,2010CB934501,and 2009CB929502)the Funds of Jilin Province,China(Grant No.JJKH20180860KJ)+1 种基金the National Natural Science Foundation of Chinathe Fundamental Research Funds for the Central Universities,China(Grant No.WK2310000043)
文摘A new low temperature Pmmm(120 K) phase was found in high temperature superconductor Sr_2 CuO_(3+δ), which was indicated as a pure electronic phase by resonant x-ray diffraction at Cu K-edge. As shown by x-ray absorption fine structure(EXAFS) and x-ray absorption near edge structure(XANES) at Cu K-edge, the strong charge density redistribution and local lattice fluctuations around Cu site at the onset of phase transition were due to the occurrence of superconductive coherence, the redistribution and fluctuation finished at Tc. Finally, the electron–lattice interaction was mainly elaborated to understand the superconductivity of Sr_2 CuO_(3+δ).
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(Ministry of Science and ICT)(NRF-2021R1G1A1092280 and NRF2019R1A6A3A03031343)the Dongil Culture and Scholarship Foundationthe technical support provided at 1-D(KIST-PAL XRD and XAFS)and 7-D beamlines(XAFS)of the Pohang Light Source-II at the Pohang Accelerating Laboratory。
文摘Transition-metal(TM)-based Prussian blue and its analogues(TM-PBAs) have attracted considerable attention as cathode materials owing to their versatile ion storage capability with tunable working voltages. TM-PBAs with different crystal structures, morphologies, and TM combinations can exhibit excellent electrochemical properties because of their unique and robust host frameworks with well-defined<100> ionic diffusion channels. Nonetheless, there is still a lack of understanding regarding the performance dependence of TM-PBAs on structural changes during charging/discharging processes. In this study, in situ X-ray diffraction and X-ray absorption fine structure analyses elucidate the TMdependent structural changes in a series of TM-PBAs during the charging and discharging processes.During the discharging process, the lattice volume of Fe-PBA increased while those of Ni-and Cu-PBAs decreased. This discrepancy is attributed to the extent of size reduction of the cyanometallate complex([Fe(CN)_(6)]) via pi-backbonding from Fe to C due to redox flips of the low-spin Fe^(3+/2+) ion. This study presents a comprehensive understanding of how TM selection affects capacity acquisition and phase transition in TM-PBAs, a promising class of cathode materials.
基金Project supported by the National Basic Research Program of China (Grant No.013CB934001)the National Natural Science Foundation of China (Grant No.51272015)
文摘Zn1-xMnxO (x = 0.0005, 0.001, 0.005, 0.01, 0.02) nanocrystals are synthesized by using a wet chemical process. The coordination environment of Mn is characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, and its X-ray absorption fine structure. It is found that the solubility of substitutional Mn in a ZnO lattice is very low, which is less than 0.4%. Mn ions first dissolve into the substitutional sites in the ZnO lattice, thereby forming Mn2+O4 tetrahedral coordination when x ≤ 0.001, then entering into the interstitial sites and forming Mn3+O6 octahedral coordination when x ≥ 0.005. All the samples exhibit paramagnetic behaviors at room temperature, and antiferromagnetic coupling can be observed below 100 K.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10375088 and 10505029). Acknowledgment The authors thank Dr Denis Sheptyakov at PSI for much support of the neutron diffraction experiments.
文摘In this paper neutron diffraction experiments were performed for Fe-substituted Mn12 in order to determine the sites of Fe atoms. The results of structure refinements for the sample with our accessed highest Fe content showed that all Fe atoms occupied Mn(3) sites in the Mn12 skeleton. The x-ray absorption fine structure experiments as well as multiple scattering simulations gave the same result. Thus we concluded that Fe atoms only occupied Mn(3) sites. This conclusion also means that Fe-substituted Mn12 series only includes the four single-molecule magnets of [Mn12-xFexO12(CH3COO)16(H2O)4]·2CH3COOH·4H2O (x = 1, 2, 3, and 4), denoted by Mn11Fe1, Mn10Fe2, MngFe3, and Mn8Fe4, respectively.
基金Project partially supported by National Science Foundation of China (Grant No. 10804017)National Science Foundation of Jiangsu Province of China (Grant No. BK2007118)+3 种基金Research Fund for the Doctoral Program of Higher Education of China(Grant No. 20070286037)Cyanine-Project Foundation of Jiangsu Province of China (Grant No. 1107020060)Foundation for Climax Talents Plan in Six-Big Fields of Jiangsu Province of China (Grant No. 1107020070)New Century Excellent Talents in University (NCET-05-0452)
文摘This paper reports that the high-quality Co-doped ZnO single crystalline films have been grown on a-plane sapphire substrates by using molecular-beam epitaxy. The as-grown films show high resistivity and non-ferromagnetism at room temperature, while they become more conductive and ferromagnetic after annealing in the reducing atmosphere either in the presence or absence of Zn vapour. The x-ray absorption studies indicate that all Co ions in these samples actually substituted into the ZnO lattice without formatting any detectable secondary phase. Compared with weak ferromagnetism (0.16 μB/Co2+) in the Zno.95 Co0.05 O single crystalline film with reducing annealing in the absence of Zn vapour, the films annealed in the reducing atmosphere with Zn vapour are found to have much stronger ferromagnetism (0.65 μB/Co2+) at room temperature. This experimental studies clearly indicate that Zn interstitials are more effective than oxygen vacancies to activate the high-temperature ferromagnetism in Co-doped ZnO films, and the corresponding ferromagnetic mechanism is discussed.
基金supported by the National Basic Research Program of China(Grant No.2013CB934001)the National Natural Science Foundation of China(Grant Nos.51072012 and 51272015)
文摘Mn-doped ZnO nanocrystals are synthesized by a wet chemical route and treated in H2/Ar atmosphere with different H2/Ar ratios. It is found that hydrogen annealing could change the coordination environment of Mn in ZnO lattice and manipulate the magnetic properties of Mn-doped ZnO. Mn ions initially enter into interstitial sites and a Mn3+ 06 octahedral coordination is produced in the prepared Mn-doped ZnO sample, in which the nearest neighbor Mn3+ and 02 ions could form a Mn3+-O2--Mn3+ complex. After H2 annealing, interstitial Mn ions can substitute for Zn to generate the Mn2+O4 tetrahedral coordination in the nanocrystals, in which neighboring Mn2+ ions and H atoms could form a Mn2+-O2--Mn2+ complex and Mn-H-Mn bridge structure. The magnetic measurement of the as-prepared sample shows room temperature paramagnetic behavior due to the Mn3+-O2--Mn3+ complex, while the annealed samples exhibit their ferromagnetism, which originates from the Mn-H-Mn bridge structure and the Mn-Mn exchange interaction in the Mn2+-O2--Mn2+ complex.
基金supported by the National Key R&D Program of China(No.2022YFB3807700)National Natural Science Foundation of China(Nos.U20A20248 and 52372247)+1 种基金Shanghai Pujiang Programme(23PJD110)Science and Technology Commission of Shanghai Municipality(No.18DZ2280800)。
文摘Lithium-and manganese-rich(LMR)oxide cathode materials are among the most attractive candidates for next-generation energy-storage materials owing to their anomalous capacity.However,severe Mn dissolution that occurs during long-term cycling,which leads to capacity loss,hinders their application prospects.In this study,nanoscale AlPO_(4)-coated Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_(2)(LMR@APO)with significantly enhanced electrochemical performance is successfully synthesized using a simple and effective sol–gel method to mitigate Mn dissolution and suppress local structural distortion at high voltages.Because of the complex evolution of the structure and oxidation state of LMR materials during electrochemical cycling,observing and analyzing them using traditional single characterization methods may be difficult.Therefore,we combine various synchrotron-based characterization techniques to conduct a detailed analysis of the electronic and coordination structures of the cathode material from the surface to the bulk.Synchrotron-based hard and soft X-ray spectroscopies are integrated to investigate the differences in O and Mn evolution between the surfaces and bulk of the cathode.Advanced synchrotron-based transmission X-ray microscopy combined with X-ray near-edge absorption-structure technology is utilized to visualize the two-dimensional nanometer-scale reactivity of the LMR cathode.The AlPO_(4)-coating layer can stabilize the surface structure of the LMR material,effectively alleviating irreversible oxygen release on the surface and preventing the dissolution of Mn^(2+)at the interface caused by side reactions after a long cycle.Therefore,the spatial reaction uniformity of Mn is enhanced by the AlPO_(4)-coating layer,and rapid capacity decay caused by Mn deactivation is prevented.The AlPO_(4)-coating method is a facile modification strategy for high-performance LMR materials.