期刊文献+
共找到1,197篇文章
< 1 2 60 >
每页显示 20 50 100
Radar emitter multi-label recognition based on residual network 被引量:13
1
作者 Yu Hong-hai Yan Xiao-peng +2 位作者 Liu Shao-kun Li Ping Hao Xin-hong 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期410-417,共8页
In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and... In low signal-to-noise ratio(SNR)environments,the traditional radar emitter recognition(RER)method struggles to recognize multiple radar emitter signals in parallel.This paper proposes a multi-label classification and recognition method for multiple radar-emitter modulation types based on a residual network.This method can quickly perform parallel classification and recognition of multi-modulation radar time-domain aliasing signals under low SNRs.First,we perform time-frequency analysis on the received signal to extract the normalized time-frequency image through the short-time Fourier transform(STFT).The time-frequency distribution image is then denoised using a deep normalized convolutional neural network(DNCNN).Secondly,the multi-label classification and recognition model for multi-modulation radar emitter time-domain aliasing signals is established,and learning the characteristics of radar signal time-frequency distribution image dataset to achieve the purpose of training model.Finally,time-frequency image is recognized and classified through the model,thus completing the automatic classification and recognition of the time-domain aliasing signal.Simulation results show that the proposed method can classify and recognize radar emitter signals of different modulation types in parallel under low SNRs. 展开更多
关键词 radar emitter recognition Image processing PARALLEL Residual network MULTI-LABEL
在线阅读 下载PDF
New structure of Kalman filter for radar networking 被引量:1
2
作者 HeYou DongYunlong WangGuohong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期241-244,共4页
Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Throug... Due to the different data rates of the sensors and communication delays in the radar netting, the research of the asynchronous multisensor data fusion problem is more practical than that of the synchronous one. Through discussing the sequential approach, which is the classical asynchronous multisensor data fusion algorithm, a new algorithm based on distributed computation structure is proposed. The new algorithm can meet the requirement of real-time computation of netting fusion system, and is more practical for engineering compared with the classical sequential approach. Simulation results show the validity of the presented algorithm. 展开更多
关键词 MULTI-SENSOR radar networking ASYNCHRONOUS FUSION SEQUENTIAL
在线阅读 下载PDF
Deep convolutional neural network for meteorology target detection in airborne weather radar images 被引量:3
3
作者 YU Chaopeng XIONG Wei +1 位作者 LI Xiaoqing DONG Lei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1147-1157,共11页
Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a de... Considering the problem that the scattering echo images of airborne Doppler weather radar are often reduced by ground clutters,the accuracy and confidence of meteorology target detection are reduced.In this paper,a deep convolutional neural network(DCNN)is proposed for meteorology target detection and ground clutter suppression with a large collection of airborne weather radar images as network input.For each weather radar image,the corresponding digital elevation model(DEM)image is extracted on basis of the radar antenna scan-ning parameters and plane position,and is further fed to the net-work as a supplement for ground clutter suppression.The fea-tures of actual meteorology targets are learned in each bottle-neck module of the proposed network and convolved into deeper iterations in the forward propagation process.Then the network parameters are updated by the back propagation itera-tion of the training error.Experimental results on the real mea-sured images show that our proposed DCNN outperforms the counterparts in terms of six evaluation factors.Meanwhile,the network outputs are in good agreement with the expected mete-orology detection results(labels).It is demonstrated that the pro-posed network would have a promising meteorology observa-tion application with minimal effort on network variables or parameter changes. 展开更多
关键词 meteorology target detection ground clutter sup-pression weather radar images convolutional neural network(CNN)
在线阅读 下载PDF
基于CNN-Swin Transformer Network的LPI雷达信号识别 被引量:1
4
作者 苏琮智 杨承志 +2 位作者 邴雨晨 吴宏超 邓力洪 《现代雷达》 CSCD 北大核心 2024年第3期59-65,共7页
针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transforme... 针对在低信噪比(SNR)条件下,低截获概率雷达信号调制方式识别准确率低的问题,提出一种基于Transformer和卷积神经网络(CNN)的雷达信号识别方法。首先,引入Swin Transformer模型并在模型前端设计CNN特征提取层构建了CNN+Swin Transformer网络(CSTN),然后利用时频分析获取雷达信号的时频特征,对图像进行预处理后输入CSTN模型进行训练,由网络的底部到顶部不断提取图像更丰富的语义信息,最后通过Softmax分类器对六类不同调制方式信号进行分类识别。仿真实验表明:在SNR为-18 dB时,该方法对六类典型雷达信号的平均识别率达到了94.26%,证明了所提方法的可行性。 展开更多
关键词 低截获概率雷达 信号调制方式识别 Swin Transformer网络 卷积神经网络 时频分析
在线阅读 下载PDF
An interference suppression algorithm for cognitive bistatic airborne radars 被引量:2
5
作者 XIA Deping ZHANG Liang +1 位作者 WU Tao HU Wenjun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期585-593,共9页
Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne r... Interference suppression is a challenge for radar researchers, especially when mainlobe and sidelobe interference coexist. We present a comprehensive anti-interference approach based on a cognitive bistatic airborne radar. The risk of interception is reduced by lowering the launch energy of the radar transmitting terminal in the direction of interference;main lobe and sidelobe interferences are suppressed via cooperation between the two radars. The interference received by a single radar is extracted from the overall radar signal using multiple signal classification(MUSIC), and the interference is cross-located using two different azimuthal angles. Neural networks allowing good, non-linear nonparametric approximations are used to predict the location of interference, and this information is then used to preset the transmitting notch antenna to reduce the likelihood of interception. To simultaneously suppress mainlobe and sidelobe interferences, a blocking matrix is used to mask mainlobe interference based on azimuthal information, and an adaptive process is used to suppress sidelobe interference. Mainlobe interference is eliminated using the data received by the two radars. Simulation verifies the performance of the model. 展开更多
关键词 interference suppression cognitive bistatic airborne radar neural network blocking matrix
在线阅读 下载PDF
Dataset of human motion status using IR-UWB through-wall radar 被引量:3
6
作者 ZHU Zhengliang YANG Degui +1 位作者 ZHANG Junchao TONG Feng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第5期1083-1096,共14页
Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the ... Ultra-wideband(UWB)through-wall radar has a wide range of applications in non-contact human information detection and monitoring.With the integration of machine learning technology,its potential prospects include the physiological monitoring of patients in the hospital environment and the daily monitoring at home.Although many target detection methods of UWB through-wall radar based on machine learning have been proposed,there is a lack of an opensource dataset to evaluate the performance of the algorithm.This published dataset is measured by impulse radio UWB(IR-UWB)through-wall radar system.Three test subjects are measured in different environments and several defined motion status.Using the presented dataset,we propose a human-motion-status recognition method using a convolutional neural network(CNN),and the detailed dataset partition method and the recognition process flow are given.On the well-trained network,the recognition accuracy of testing data for three kinds of motion status is higher than 99.7%.The dataset presented in this paper considers a simple environment.Therefore,we call on all organizations in the UWB radar field to cooperate to build opensource datasets to further promote the development of UWB through-wall radar. 展开更多
关键词 impulse radio ultra-wideband(IR-UWB) through-wall radar human motion status DATASET convolutional neural network(CNN)
在线阅读 下载PDF
Optimization method of linear barrier coverage deployment for multistatic radar 被引量:2
7
作者 LI Haipeng FENG Dazheng WANG Xiaohui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期68-80,共13页
To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ... To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction. 展开更多
关键词 multistatic radar linear barrier coverage minimum deployment cost deployment sequence wireless sensor networks(WSNs)
在线阅读 下载PDF
Circulation Retrieval of Wake Vortices under Rainy Conditions with an X Band Radar 被引量:1
8
作者 Jean-Yves Schneider Gilles Beauquet Frederic Barbaresco 《雷达学报(中英文)》 CSCD 2017年第6期673-688,共16页
At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate... At airports, runway operation is the limiting factor for the overall throughput; specifically the fixed and overly conservative ICAO wake turbulence separation minima. The wake turbulence hazardous flows can dissipate quicker because of decay due to air turbulence or be transported out of the way on oncoming traffic by cross-wind, yet wake turbulence separation minima do not take into account wind conditions. Indeed, for safety reasons, most airports assume a worst-case scenario and use conservative separations; the interval between aircraft taking off or landing therefore often amounts to several minutes. However, with the aid of accurate wind data and precise measurements of wake vortex by radar sensors, more efficient intervals can be set, particularly when weather conditions are stable. Depending on traffic volume, these adjustments can generate capacity gains, which have major commercial benefits. This paper presents the use of Electronic scanning radar for detecting wake vortices. In this method, the raindrops Doppler spectrogram is used to retrieve the strength of the wake vortex. Numerical simulation are performed to establish an empirical model used during the retrieval method. This paper presents also the results obtained during the trials of the PARIS-CDG data set recorded from October 2014 to November 2015 with an X-band RADAR developed and deployed by THALES. 展开更多
关键词 Wake-vortex hazard Airport capacity Airport safety x-band radar Wake-vortex circulation Eddy dissipation rate
在线阅读 下载PDF
面向LiDAR/Radar松组合的迭代加权IEKF-BP组合算法精度分析 被引量:1
9
作者 宋宝 柯福阳 赵兴旺 《测绘通报》 CSCD 北大核心 2021年第2期44-48,共5页
为了验证目前高精度定位中多传感器组合定位模型性能的优越性,以更好地解决自动驾驶场景下自主定位中出现的预测精度标准不一致、预测不及时及误预测率高等问题,本文利用LiDAR与Radar数据,建立了一种基于迭代加权的IEKF-BP组合算法的松... 为了验证目前高精度定位中多传感器组合定位模型性能的优越性,以更好地解决自动驾驶场景下自主定位中出现的预测精度标准不一致、预测不及时及误预测率高等问题,本文利用LiDAR与Radar数据,建立了一种基于迭代加权的IEKF-BP组合算法的松组合模型,并对两种传感器组合定位结果精度进行了分析。试验表明,迭代加权的IEKF-BP组合算法的组合结果精度优于单一的IEKF算法和BP神经网络算法组合定位精度,其中,在X、Y方向上的均方根误差分别为0.028、0.028 m,平均误差分别为0.023、0.014 m,能准确反映载体的运动状态,满足未来无人驾驶中定位需求。 展开更多
关键词 组合定位与导航 LiDAR/radar松组合定位 迭代拓展卡尔曼滤波 BP神经网络 迭代加权的IEKF-BP组合定位算法
在线阅读 下载PDF
Anti-swarm UAV radar system based on detection data fusion
10
作者 WANG Pengfei HU Jinfeng +2 位作者 HU Wen WANG Weiguang DONG Hao 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第5期1167-1176,共10页
There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti... There is a growing body of research on the swarm unmanned aerial vehicle(UAV)in recent years,which has the characteristics of small,low speed,and low height as radar target.To confront the swarm UAV,the design of anti-UAV radar system based on multiple input multiple output(MIMO)is put forward,which can elevate the performance of resolution,angle accuracy,high data rate,and tracking flexibility for swarm UAV detection.Target resolution and detection are the core problem in detecting the swarm UAV.The distinct advantage of MIMO system in angular accuracy measurement is demonstrated by comparing MIMO radar with phased array radar.Since MIMO radar has better performance in resolution,swarm UAV detection still has difficulty in target detection.This paper proposes a multi-mode data fusion algorithm based on deep neural networks to improve the detection effect.Subsequently,signal processing and data processing based on the detection fusion algorithm above are designed,forming a high resolution detection loop.Several simulations are designed to illustrate the feasibility of the designed system and the proposed algorithm. 展开更多
关键词 SWARM radar high resolution deep neural network fusion algorithm
在线阅读 下载PDF
Deinterleaving of radar pulse based on implicit feature
11
作者 GUO Qiang TENG Long +2 位作者 WU Xinliang QI Liangang SONG Wenming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1537-1549,共13页
In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to dei... In the complex countermeasure environment,the pulse description words(PDWs)of the same type of multi-function radar emitters are similar in multiple dimensions.Therefore,it is difficult for conventional methods to deinterleave such emitters.In order to solve this problem,a pulse deinterleaving method based on implicit features is proposed in this paper.The proposed method introduces long short-term memory(LSTM)neural networks and statistical analysis to mine new features from similar PDW features,that is,the variation law(implicit features)of pulse sequences of different radiation sources over time.The multi-function radar emitter is deinterleaved based on the pulse sequence variation law.Statistical results show that the proposed method not only achieves satisfactory performance,but also has good robustness. 展开更多
关键词 multi-functional radars of the same type pulse deinterleaving pulse amplitude implicit feature long short-term memory(LSTM)neural networks.
在线阅读 下载PDF
基于探地雷达单道信号的碎石道床病害智能识别 被引量:1
12
作者 井国庆 卜俊杰 彭湛 《铁道学报》 北大核心 2025年第6期170-178,共9页
基于探地雷达的铁路碎石道床病害检测技术是指导铁路基础设施养护维修的重要技术手段,目前该技术主要通过人工解读雷达图像的方式给出病害区域,自动化水平较低。提出一种利用神经网络技术对铁路碎石道床病害智能识别的方法。该方法对雷... 基于探地雷达的铁路碎石道床病害检测技术是指导铁路基础设施养护维修的重要技术手段,目前该技术主要通过人工解读雷达图像的方式给出病害区域,自动化水平较低。提出一种利用神经网络技术对铁路碎石道床病害智能识别的方法。该方法对雷达单道信号进行多特征提取,并进行特征敏感性分析,利用神经网络技术进行训练,可实现对正常道床、含水异常和翻浆冒泥的准确识别。结果表明,该方法在测试集上的病害识别准确率达到95.89%,在相邻铁路线上的准确率为90.19%。此研究显著提高了病害检测的效率和准确性,对铁路道床维护和安全运营提供了重要的技术支持,具有实际应用价值。 展开更多
关键词 碎石道床 探地雷达 特征值 神经网络 无损检测
在线阅读 下载PDF
一种基于长短期记忆网络的雷达目标跟踪算法 被引量:1
13
作者 张正文 向严谨 廖桂生 《现代雷达》 北大核心 2025年第2期83-90,共8页
在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长... 在道路交通系统中,毫米波雷达以其分辨率高和抗干扰能力强的特点成为了热门的目标运动信息采集传感器。传统的目标跟踪算法在雷达观测信息丢失的情况下会出现跟踪误差较大或无法进行目标跟踪的现象。针对这一问题,文中提出了一种基于长短期记忆(LSTM)网络的雷达目标跟踪算法,在雷达观测值正常时,利用LSTM网络的记忆函数,对雷达的观测值进行训练并预测;当雷达观测值丢失时,利用LSTM网络为扩展卡尔曼算法提供观测值的预测值,以保证扩展卡尔曼算法能够继续对目标进行跟踪,达到降低目标跟踪误差的目的。文中通过雷达实测数据对LSTM网络进行训练,并针对直线和曲线两种运动状态进行了仿真验证分析,仿真结果表明,提出的目标跟踪算法在雷达的观测值丢失的情况下仍然可以对目标进行跟踪,并有效地降低了目标跟踪算法的误差。 展开更多
关键词 毫米波雷达 目标跟踪 长短期记忆网络 扩展卡尔曼滤波 非线性滤波
在线阅读 下载PDF
一种探地雷达与深度学习的隧道衬砌健康评价方法 被引量:1
14
作者 张广伟 《测绘通报》 北大核心 2025年第3期122-126,149,共6页
隧道在其服役期内,受多种因素影响,隧道壁后会产生空洞、不密实等多种结构病害,影响服役性能,探地雷达(GPR)无损检测技术广泛应用于隧道质量检测领域,但由于雷达数据的解译工作较为复杂,数据量大,检测效率有待提高。近年来,深度学习因... 隧道在其服役期内,受多种因素影响,隧道壁后会产生空洞、不密实等多种结构病害,影响服役性能,探地雷达(GPR)无损检测技术广泛应用于隧道质量检测领域,但由于雷达数据的解译工作较为复杂,数据量大,检测效率有待提高。近年来,深度学习因其出色的数据处理能力和信息提取能力而备受瞩目,提供了多种高效、可靠的病害分类模型。本文基于GPR图像,提出了一种多级病害分类方法用于评估隧道衬砌健康状况。首先,获取雷达图像数据,并进行人工解译,创建样本数据库,用于模型的输入和输出,以训练和测试深度学习模型;然后,针对数据库的小样本特点,利用Vision Transformer网络和改进后的Compact Convolutional Transformer对数据进行分类。结果显示,Vision Transformer算法可以实现基于雷达影像的隧道衬砌健康评价,相较于其他版本,具有更好的结果及较高的准确率。 展开更多
关键词 探地雷达 神经网络 Vision Transformer 隧道衬砌健康评价
在线阅读 下载PDF
基于复数域卷积神经网络的ISAR包络对齐方法研究 被引量:1
15
作者 王勇 夏浩然 刘明帆 《信号处理》 北大核心 2025年第3期409-425,共17页
在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了... 在逆合成孔径雷达(Inverse Synthetic Aperture Radar,ISAR)成像领域,运动补偿是确保高质量图像生成的关键环节。包络对齐(Range Alignment,RA)作为运动补偿的首要步骤,对于校正由平动分量引起的回波信号包络偏移至关重要。本文提出了一种基于复数域卷积神经网络(Complex-Valued Convolutional Neural Network,CVCNN)的包络对齐新方法,旨在通过深度学习策略提升包络对齐的精度与计算效率。本文所提方法利用了卷积神经网络强大的特征学习能力,构建了一个能够映射一维距离像与包络补偿量之间复杂关系的模型。通过将传统的实值卷积神经网络拓展至复数域,不仅完整保留了回波信号中的相位信息,而且有效引入了复数域残差块及线性连接机制,进一步精细化了网络结构设计。这种架构改进使得所提算法能实现低信噪比(Signal-to-Noise Ratio,SNR)条件下对ISAR距离像的高效包络对齐。在数据生成方面,本文基于雷达仿真参数,通过成像模拟仿真构建了ISAR回波数据集。该数据集经过归一化处理后,输入网络进行训练,使网络能够学习从未对齐回波到对应补偿量的映射关系。本文所提方法采用迁移学习策略,对基于仿真数据预训练的模型进行微调,以适应实测数据。这一策略不仅增强了结果的可靠性,同时也大幅缩短了模型的迭代周期。在实验验证方面,本文采用仿真与实测数据进行综合测试,以包络对齐精度、成像结果质量和计算效率为评价指标,全面验证了算法的有效性。实验结果表明,在不同信噪比条件下,本文所提方法均展现出了优越的包络对齐性能,进而可以实现高质量成像,同时在计算效率上也具有显著优势。 展开更多
关键词 逆合成孔径雷达 包络对齐 复数域卷积神经网络 有监督学习
在线阅读 下载PDF
孪生网络辅助下多域特征融合的雷达有源干扰识别方法
16
作者 李宁 王赞 +2 位作者 舒高峰 张庭玮 郭拯危 《电子与信息学报》 北大核心 2025年第6期1837-1849,共13页
针对目前雷达有源干扰识别方法在低干噪比下识别精度低和训练样本难以高效获取的问题,该文提出一种孪生网络辅助下多域特征融合的雷达有源干扰识别方法。首先,为了实现低干噪比下干扰特征的有效提取,构建了一种多域特征融合子网络;具体... 针对目前雷达有源干扰识别方法在低干噪比下识别精度低和训练样本难以高效获取的问题,该文提出一种孪生网络辅助下多域特征融合的雷达有源干扰识别方法。首先,为了实现低干噪比下干扰特征的有效提取,构建了一种多域特征融合子网络;具体地,结合半软阈值函数和注意力机制,提出半软阈值收缩模块,以有效提取时域特征,避免手工提取阈值的不足,同时引入多尺度卷积模块和注意力模块,以增强时频域特征提取能力。然后,为了降低识别模型对样本的依赖,设计了一种权值共享的孪生网络,通过对比样本间相似度扩大训练次数,以解决样本不足问题。最后,联合改进的加权对比度损失函数、自适应交叉熵损失函数和3元组损失函数,实现干扰特征的类内聚集、类间分离。实验结果表明,在干噪比为–6 dB且每类干扰为20个训练样本时,对10种典型有源干扰的识别率达到96.88%。 展开更多
关键词 雷达有源干扰识别 孪生网络 多域特征 注意力机制
在线阅读 下载PDF
基于改进TCN-Elman神经网络的电离层杂波抑制方法
17
作者 刘强 尚尚 +2 位作者 乔铁柱 祝健 石依山 《北京航空航天大学学报》 北大核心 2025年第9期3203-3211,共9页
高频地波雷达因其卓越的海面目标探测能力,被世界各国应用于海上工程领域,而提升其目标探测能力的关键要素之一在于回波信号中电离层杂波的抑制,针对这一现象,提出一种基于瓶颈膨胀卷积模块改进时序卷积(ITCN)-Elman神经网络结合混合注... 高频地波雷达因其卓越的海面目标探测能力,被世界各国应用于海上工程领域,而提升其目标探测能力的关键要素之一在于回波信号中电离层杂波的抑制,针对这一现象,提出一种基于瓶颈膨胀卷积模块改进时序卷积(ITCN)-Elman神经网络结合混合注意力机制的电离层杂波预测抑制模型(Mixatt-ITCN-Elman)。对电离层杂波时间序列进行相空间重构和乱序归一化,利用ITCN提取高维相空间内的空间特征,依据自注意力机制突出其中关键的空间特征,将空间特征与原时间序列组合输入Elman神经网络,结合注意力机制突显序列的空时特征,通过空时特征与Elman神经网络输出序列组合输出,得到最终预测结果。所提模型与Elman、TCN、Att-CNNElman和TCN-Elman模型相对比,具有较好的预测性能和稳定性,对于电离层杂波的抑制具有较高应用价值。 展开更多
关键词 高频地波雷达 电离层杂波 时序卷积网络 ELMAN神经网络 注意力机制
在线阅读 下载PDF
基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计
18
作者 陈金立 周龙 +1 位作者 李家强 姚昌华 《电讯技术》 北大核心 2025年第5期674-683,共10页
受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA... 受恶劣电磁环境和元器件老化等因素影响,多输入多输出(Multiple-Input Multiple-Output,MIMO)雷达的天线阵元发生故障的概率增加,而阵元故障会严重降低目标波达方向(Direction of Arrival,DOA)估计性能。现有的大多数基于深度学习的DOA估计方法未能充分利用阵列模型的先验信息,导致其建立的映射关系极为复杂,从而使得网络拟合难度较大。为此,提出一种基于先验驱动残差注意力网络的阵元故障MIMO雷达DOA估计方法。首先,利用MIMO雷达协方差矩阵的双重Toeplitz先验特性,构建了基于先验驱动的残差注意力网络,并引入残差注意力块对协方差矩阵的特征进行加权处理,旨在学习阵元故障下存在数据缺失的协方差矩阵和完整协方差矩阵生成向量之间的映射关系。然后,根据残差注意力网络输出的生成向量估计值得到完整的协方差矩阵。最后,利用RD-ESPRIT(Reduced Dimension ESPRIT)算法估计目标DOA。仿真结果表明,所提算法在阵元故障下的DOA估计性能优于现有算法,在信噪比为15 dB时,其DOA估计精度比效果最好的现有算法提高了43.26%。 展开更多
关键词 MIMO雷达 DOA估计 双重Toeplitz先验 残差网络 注意力机制
在线阅读 下载PDF
基于改进神经网络的汽车雷达影像目标检测研究
19
作者 田丹 胡元元 《激光杂志》 北大核心 2025年第7期168-173,共6页
汽车行驶过程中,需要实时地检测和识别出目标,并在复杂多变的环境中准确地区分目标和背景,这一过程对算法的计算效率要求高。为此,提出基于改进神经网络的汽车雷达影像目标检测方法。通过精细的剪枝策略与结构化稀疏约束改进神经网络,... 汽车行驶过程中,需要实时地检测和识别出目标,并在复杂多变的环境中准确地区分目标和背景,这一过程对算法的计算效率要求高。为此,提出基于改进神经网络的汽车雷达影像目标检测方法。通过精细的剪枝策略与结构化稀疏约束改进神经网络,有效剔除了目标检测模型中的冗余元素与弱相关性结构,实现了模型的轻量化与高效化。在检测流程中,利用卷积与池化操作精准捕捉目标特征,借助逻辑回归损失函数精确评估检测效果,并通过反向传播与小批量梯度下降算法不断优化模型参数,直至达到最佳检测效果。实验验证,该方法显著提高了目标检测的效率与准确性。 展开更多
关键词 汽车雷达影像 光照不均匀 神经网络优化 卷积神经网络 剪枝技术 目标检测效率
在线阅读 下载PDF
边缘引导的双分支网络SAR图像相干斑抑制方法
20
作者 朱磊 姚同钰 +3 位作者 车晨洁 姚丽娜 张博 潘杨 《北京航空航天大学学报》 北大核心 2025年第6期1852-1862,共11页
为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边... 为进一步提升深度学习方法对合成孔径雷达(SAR)图像相干斑的抑制与边缘保持性能,提出了一种边缘引导的双分支网络相干斑抑制方法。构建了一种由边缘信息提取模块与双分支抑斑网络2部分构成的新型抑斑网络模型。采用密集级联方式构建边缘信息提取模块,增强模型的边缘感知能力;利用基于通道注意力的残差抑斑子网络(CARNet)、基于混合注意力的增强抑斑子网络(MAENet)及基于多分支并行的多尺度特征融合模块(MPMFFB)共同形成双分支抑斑网络,实现在相干斑抑制的同时更好地保护边缘细节。实验结果表明:与SAR-Transformer、HTNet等先进方法相比,所提方法具有更好的相干斑抑制与边缘保持性能;对仿真SAR图像,峰值信噪比、结构相似性、边缘保持指数分别平均提升0.96 dB、2.60%、0.60%;对真实SAR图像,等效视数提升14.12%以上,边缘保持指数平均提升4.52%。 展开更多
关键词 图像去噪 合成孔径雷达图像 相干斑抑制 双分支网络 多尺度特征融合
在线阅读 下载PDF
上一页 1 2 60 下一页 到第
使用帮助 返回顶部