Copper ion is the essential microelement to many organisms. In this paper, the local structure of Cu2+ in CuBr2 aqueous solutions with different concentrations are investigated by using X-ray absorption fine structure...Copper ion is the essential microelement to many organisms. In this paper, the local structure of Cu2+ in CuBr2 aqueous solutions with different concentrations are investigated by using X-ray absorption fine structure (XAFS) technique. XANES (X-ray Absorption Near Edge Structure) spectra indicate that charge transfer from Br- to Cu2+ decreases with the solution concentration, which lead to a shift of the absorption edge. The shoulder appearing at the rising edge proves to be characteristic of a tetragonal distortion. The Fourier transform magnitudes of EXAFS (Extended X-ray absorption fine structure) data of Cu species suggest that more Cu-Br bonds may exist in high concentrations. A fivefold coordination configuration like a pyramid is used as the fitting parameters. From the analysis of the coordination numbers, the proportion of Cu-O and Cu-Br is 4:1 in the saturated solution. The Br atom is on the equatorial plane of the model. The fitting results agree well with the experiment data.展开更多
基金Supported by National Natural Science Foundation of China (Grant No.11005148,10705046,11135008)National Basic Research Program of China (Grant No. 2010CB934501)+1 种基金Special Presidential Foundation of the Chinese Academy of Science (Grant No. 29)Science and Technology Commission of Shanghai Municipality (Grant No. 11JC1414900)
文摘Copper ion is the essential microelement to many organisms. In this paper, the local structure of Cu2+ in CuBr2 aqueous solutions with different concentrations are investigated by using X-ray absorption fine structure (XAFS) technique. XANES (X-ray Absorption Near Edge Structure) spectra indicate that charge transfer from Br- to Cu2+ decreases with the solution concentration, which lead to a shift of the absorption edge. The shoulder appearing at the rising edge proves to be characteristic of a tetragonal distortion. The Fourier transform magnitudes of EXAFS (Extended X-ray absorption fine structure) data of Cu species suggest that more Cu-Br bonds may exist in high concentrations. A fivefold coordination configuration like a pyramid is used as the fitting parameters. From the analysis of the coordination numbers, the proportion of Cu-O and Cu-Br is 4:1 in the saturated solution. The Br atom is on the equatorial plane of the model. The fitting results agree well with the experiment data.