Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer...Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.展开更多
Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby s...Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.展开更多
提出了一种对Landsat-8和Worldview-2协同后的岩性分类方法。首先对Landsat-8和Worldview-2影像进行协同:在对Landsat-8全色波段与其多光谱进行自协同后,与Worldview-2多光谱第8波段数据协同,将协同后的Landsat-8中短波红外数据与Worldv...提出了一种对Landsat-8和Worldview-2协同后的岩性分类方法。首先对Landsat-8和Worldview-2影像进行协同:在对Landsat-8全色波段与其多光谱进行自协同后,与Worldview-2多光谱第8波段数据协同,将协同后的Landsat-8中短波红外数据与Worldview-2数据进行叠加,得到最后协同结果。对协同后的数据进行岩性分类:利用基于最大似然法(maximum likelihood,ML)进行初始分类,由马尔科夫随机场法(Markov Random Field,MRF)对结果进行优化得到最终分类结果。采用新疆西昆仑地区遥感数据进行了实验,结果证实协同后数据的分类结果具有更高的分类精度。展开更多
利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别...利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别构建芦苇和香蒲任意两波段反射率组合而成的比值(SR)和归一化差值植被指数(NDVI),通过分析植被指数与CWC(冠层含水量,Canopy Water Content)的相关关系,选择与CWC显著相关的植被指数,并通过单变量线性与非线性拟合的分析方法确定监测不同挺水植物群落的最佳植被指数,建立估算模型;结合覆盖研究区的WorldView-2高分辨率多光谱影像,对研究区的挺水植物群落CWC进行反演及制图.结果表明,基于模拟WorldView-2影像光谱构建的比值(SR)和归一化差值植被指数(NDVI)与CWC的总体相关性较高;SR(8,3)芦苇为估算CWC芦苇的最优植被指数,估算模型为y=0.005x+0.003,NDVI(8,3)香蒲为估算CWC香蒲的最优植被指数,估算模型为y=2.461x2-0.313x+0.032,通过交叉检验,CWC芦苇和CWC香蒲的预测精度分别为87.42%和82.12%,预测精度较为理想;利用实测数据对反演的CWC空间分布图进行了验证,通过验证,芦苇和香蒲影像估算CWC的均方根差(RMSE)分别为0.0048和0.0052,估算精度分别为83.56%和80.31%,表明利用WorldView-2高分辨率多光谱影像反演湿地挺水植物群落CWC具有较高的可行性.展开更多
文摘Objective To qualitatively assess the diagnostic performance of dynamic contrast enhancement(DCE),diffusionweighted imaging(DWI),and T2-weighted imaging(T2WI),alone or in combination,in the evaluation of breast cancer.Methods We retrospectively reviewed the records of 394 consecutive patients with pathologically confirmed breast lesions who had undergone 3-T magnetic resonance imaging(MRI).The morphological characteristics of breast lesions were evaluated using DCE,DWI,and T2WI based on BI-RADS lexicon descriptors by trained radiologists.Patients were categorized into mass and non-mass groups based on MRI characteristics of the lesions,and the differences between benign and malignant lesions in each group were compared.Clinical prediction models for breast cancer diagnosis were constructed using logistic regression analysis.Diagnostic efficacies were compared using the area under the receiver operating characteristic curve(AUC)and DeLong test.Results For mass-like lesions,all the morphological parameters significantly differentiated benign and malignant lesions on consensus DCE,DWI,and T2WI(P<0.05).The combined method(DCE+DWI+T2WI)had a higher AUC(0.865)than any of the individual modality(DCE:0.786;DWI:0.793;T2WI:0.809)(P<0.05).For non-mass-like lesions,DWI signal intensity was a significant predictor of malignancy(P=0.036),but the model using DWI alone had a low AUC(0.669).Conclusion Morphological assessment using the combination of DCE,DWI,and T2WI provides better diagnostic value in differentiating benign and malignant breast mass-like lesions than assessment with only one of the modalities.
基金Supported by National Natural Science Foundation of China(22264023)Natural Science Foundation of Shaanxi Province(2024JC-YBQN-0150)+2 种基金Yan'an Science and Technology Bureau Project(2023-SFGG-057)Scientific Research Projects of Education Department of Shaanxi Province(22JK0614)PhD Start Fund of Yan'an University(YDBK2022-15)。
文摘Manganese(Mn),an essential trace element in the human body,plays critical roles in many biological processes.Recent studies have discovered that Mn^(2+)may promote or directly activate the cGAS-STING pathway,thereby subsequently initiating the natural immune response and augmenting antitumor therapy.However,the current lack of accurate methods for Mn^(2+)determination in cells significantly limits their mechanism investigation;hence,it is urgent to establish novel tools to detect Mn^(2+)in cells.In this study,the dual-emission carbon dots were initially synthesized via the one-pot hydrothermal method employing L-aspartic acid and p-phenylenediamine as raw materials.In the presence of Mn^(2+),the emission peak centered at 350 nm exhibited significant enhancement,whereas another peak at 610 nm remained stable.Consequently,a ratiometric sensor for Mn^(2+)determination was established using the signal at 350 nm as the responsive signal and the signal at 610 nm as an internal reference.Under the optimal condition,a good linear relationship was achieved between the F350/F610 value and Mn^(2+)concentration ranging from 0.9 to 15μmol/L,with a calculated LOD of 61 nmol/L.Benefiting from the special Mn^(2+)-induced ratiometric approach,this method demonstrates outstanding sensitivity,selectivity,and stability,rendering it applicable for Mn^(2+)determination in complex biological samples,as well as Mn^(2+)imaging in MKN-45 and LO2 cells.
文摘提出了一种对Landsat-8和Worldview-2协同后的岩性分类方法。首先对Landsat-8和Worldview-2影像进行协同:在对Landsat-8全色波段与其多光谱进行自协同后,与Worldview-2多光谱第8波段数据协同,将协同后的Landsat-8中短波红外数据与Worldview-2数据进行叠加,得到最后协同结果。对协同后的数据进行岩性分类:利用基于最大似然法(maximum likelihood,ML)进行初始分类,由马尔科夫随机场法(Markov Random Field,MRF)对结果进行优化得到最终分类结果。采用新疆西昆仑地区遥感数据进行了实验,结果证实协同后数据的分类结果具有更高的分类精度。
文摘利用多光谱遥感技术定量估算野鸭湖湿地挺水植物的含水量.基于典型挺水植物的实测冠层光谱及其对应样方的叶片含水量和叶面积指数LAI数据,首先对芦苇和香蒲的地面实测光谱进行重采样,以模拟WorldView-2影像的光谱,然后利用模拟光谱分别构建芦苇和香蒲任意两波段反射率组合而成的比值(SR)和归一化差值植被指数(NDVI),通过分析植被指数与CWC(冠层含水量,Canopy Water Content)的相关关系,选择与CWC显著相关的植被指数,并通过单变量线性与非线性拟合的分析方法确定监测不同挺水植物群落的最佳植被指数,建立估算模型;结合覆盖研究区的WorldView-2高分辨率多光谱影像,对研究区的挺水植物群落CWC进行反演及制图.结果表明,基于模拟WorldView-2影像光谱构建的比值(SR)和归一化差值植被指数(NDVI)与CWC的总体相关性较高;SR(8,3)芦苇为估算CWC芦苇的最优植被指数,估算模型为y=0.005x+0.003,NDVI(8,3)香蒲为估算CWC香蒲的最优植被指数,估算模型为y=2.461x2-0.313x+0.032,通过交叉检验,CWC芦苇和CWC香蒲的预测精度分别为87.42%和82.12%,预测精度较为理想;利用实测数据对反演的CWC空间分布图进行了验证,通过验证,芦苇和香蒲影像估算CWC的均方根差(RMSE)分别为0.0048和0.0052,估算精度分别为83.56%和80.31%,表明利用WorldView-2高分辨率多光谱影像反演湿地挺水植物群落CWC具有较高的可行性.