针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精...针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精度,将Bag of Words应用于干果图像识别和分类是可行的。展开更多
传统的Bag of Words模型检索方法并不具备局部特征间的空间关系,因此影响检索性能.本文提出了基于分级显著信息的空间编码方法.通过分层次的提取显著区域并对每个显著区域内的特征点进行空间编码.目的是探索特征间的空间关系,并根据分...传统的Bag of Words模型检索方法并不具备局部特征间的空间关系,因此影响检索性能.本文提出了基于分级显著信息的空间编码方法.通过分层次的提取显著区域并对每个显著区域内的特征点进行空间编码.目的是探索特征间的空间关系,并根据分级显著信息提高特征间的相关性.在几何验证过程中,本文通过任意三点间的角度编码和位移编码构成的空间编码方法完成图像对之间的空间关系匹配,同时根据图像各个区域间的显著程度赋予该区域空间关系匹配得分相应权重,得到最终的几何得分,重新排列检索结果.实验结果表明本文提出的方法既改善了最终检索结果的精确度又降低了几何验证阶段的计算时间.展开更多
文摘针对干果图像信息量大、分类精度低和耗时多的特点,提出利用Bag of Words模型提取图片的代表特征,并采用朴素贝叶斯分类器指导特征矩阵分类。结果表明,图像分类精度能达到80%,分类处理时间约为2 s。通过增加学习样本来进一步提高分类精度,将Bag of Words应用于干果图像识别和分类是可行的。
文摘传统的Bag of Words模型检索方法并不具备局部特征间的空间关系,因此影响检索性能.本文提出了基于分级显著信息的空间编码方法.通过分层次的提取显著区域并对每个显著区域内的特征点进行空间编码.目的是探索特征间的空间关系,并根据分级显著信息提高特征间的相关性.在几何验证过程中,本文通过任意三点间的角度编码和位移编码构成的空间编码方法完成图像对之间的空间关系匹配,同时根据图像各个区域间的显著程度赋予该区域空间关系匹配得分相应权重,得到最终的几何得分,重新排列检索结果.实验结果表明本文提出的方法既改善了最终检索结果的精确度又降低了几何验证阶段的计算时间.