安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采...安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。展开更多
[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以...[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。展开更多
词性是自然语言处理的基本要素,词语顺序包含了所传达的语义与语法信息,它们都是自然语言中的关键信息.在word embedding模型中如何有效地将两者结合起来,是目前研究的重点.本文提出的Structured word2vec on POS联合了词语顺序与词性...词性是自然语言处理的基本要素,词语顺序包含了所传达的语义与语法信息,它们都是自然语言中的关键信息.在word embedding模型中如何有效地将两者结合起来,是目前研究的重点.本文提出的Structured word2vec on POS联合了词语顺序与词性两种信息,不仅使模型可以感知词语位置顺序,而且利用词性关联信息来建立上下文窗口内词语之间的固有句法关系.Structured word2vec on POS将词语按其位置顺序定向嵌入,对词向量和词性相关加权矩阵进行联合优化.实验通过词语类比、词相似性任务,证明了所提出的方法的有效性.展开更多
为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维...为了对饮食文本信息高效分类,建立一种基于word2vec和长短期记忆网络(Long-short term memory,LSTM)的分类模型。针对食物百科和饮食健康文本特点,首先利用word2vec实现包含语义信息的词向量表示,并解决了传统方法导致数据表示稀疏及维度灾难问题,基于K-means++根据语义关系聚类以提高训练数据质量。由word2vec构建文本向量作为LSTM的初始输入,训练LSTM分类模型,自动提取特征,进行饮食宜、忌的文本分类。实验采用48 000个文档进行测试,结果显示,分类准确率为98.08%,高于利用tf-idf、bag-of-words等文本数值化表示方法以及基于支持向量机(Support vector machine,SVM)和卷积神经网络(Convolutional neural network,CNN)分类算法结果。实验结果表明,利用该方法能够高质量地对饮食文本自动分类,帮助人们有效地利用健康饮食信息。展开更多
提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的...提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。展开更多
文摘安全是民航业的核心主题。针对目前民航非计划事件分析严重依赖专家经验及分析效率低下的问题,文章提出一种结合Word2vec和双向长短期记忆(bidirectional long short-term memory,BiLSTM)神经网络模型的民航非计划事件分析方法。首先采用Word2vec模型针对事件文本语料进行词向量训练,缩小空间向量维度;然后通过BiLSTM模型自动提取特征,获取事件文本的完整序列信息和上下文特征向量;最后采用softmax函数对民航非计划事件进行分类。实验结果表明,所提出的方法分类效果更好,能达到更优的准确率和F 1值,对不平衡数据样本同样具有较稳定的分类性能,证明了该方法在民航非计划事件分析上的适用性和有效性。
文摘[目的/意义]在人工智能技术及应用快速发展与深刻变革背景下,机器学习领域不断出现新的研究主题和方法,深度学习和强化学习技术持续发展。因此,有必要探索不同领域机器学习研究主题演化过程,并识别出热点与新兴主题。[方法/过程]本文以图书情报领域中2011—2022年Web of Science数据库中的机器学习研究论文为例,融合LDA和Word2vec方法进行主题建模和主题演化分析,引入主题强度、主题影响力、主题关注度与主题新颖性指标识别热点主题与新兴热点主题。[结果/结论]研究结果表明,(1)Word2vec语义处理能力与LDA主题演化能力的结合能够更加准确地识别研究主题,直观展示研究主题的分阶段演化规律;(2)图书情报领域的机器学习研究主题主要分为自然语言处理与文本分析、数据挖掘与分析、信息与知识服务三大类范畴。各类主题之间的关联性较强,且具有主题关联演化特征;(3)设计的主题强度、主题影响力和主题关注度指标及综合指标能够较好地识别出2011—2014年、2015—2018年和2019—2022年3个不同周期阶段的热点主题。
文摘词性是自然语言处理的基本要素,词语顺序包含了所传达的语义与语法信息,它们都是自然语言中的关键信息.在word embedding模型中如何有效地将两者结合起来,是目前研究的重点.本文提出的Structured word2vec on POS联合了词语顺序与词性两种信息,不仅使模型可以感知词语位置顺序,而且利用词性关联信息来建立上下文窗口内词语之间的固有句法关系.Structured word2vec on POS将词语按其位置顺序定向嵌入,对词向量和词性相关加权矩阵进行联合优化.实验通过词语类比、词相似性任务,证明了所提出的方法的有效性.
文摘提出了一种利用"bag of words"模型对视频内容进行建模和匹配的方法。通过量化视频帧的局部特征构建视觉关键词(visual words)辞典,将视频的子镜头表示成若干视觉关键词的集合。在此基础上构建基于子镜头的视觉关键词词组的倒排索引,用于视频片段的匹配和检索。这种方法保留了局部特征的显著性及其相对位置关系,而且有效地压缩了视频的表达,加速的视频的匹配和检索过程。实验结果表明,和已有方法相比,基于"bag of words"的视频匹配方法在大视频样本库上获得了更高的检索精度和检索速度。