期刊文献+
共找到630篇文章
< 1 2 32 >
每页显示 20 50 100
基于改进GWO算法的掘进机断面成形轨迹规划方法研究 被引量:1
1
作者 张旭辉 汤杜炜 +3 位作者 杨文娟 董征 田琛辉 余恒翰 《工程设计学报》 北大核心 2025年第3期296-307,共12页
巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(... 巷道断面成形是煤矿掘进过程中的重要工序,但目前的巷道断面成形作业多为人工控制掘进机进行往复式截割,制约了煤矿掘进工作面的智能化发展。为此,针对断面成形轨迹规划未考虑煤岩特征、优化目标单一的问题,提出了一种基于改进灰狼优化(grey wolf optimizer, GWO)算法的掘进机断面成形轨迹规划方法。首先,根据夹矸位置将待截割断面环境分为4种情况,对相应断面进行栅格化处理并建立栅格地图,同时采用二值膨胀法对不规则夹矸进行膨胀化处理。然后,对GWO算法进行了改进,以提升其寻优性能和收敛速度。接着,开展了仿真实验,利用改进GWO算法实现了4种环境下掘进机断面成形轨迹的规划。最后,利用掘进机样机开展了断面截割实验。仿真结果表明:相较于传统的GWO算法,改进GWO算法的收敛速度更快且收敛精度更高;在4种断面环境下,基于改进GWO算法规划的断面成形轨迹长度最短,欠挖面积最小,转向次数最少,更容易实现高精度、高效率的轨迹跟踪控制,保证了巷道断面的成形质量。实验结果表明,基于改进GWO算法规划的断面成形轨迹既能提高掘进机的截割效率,又能满足巷道断面成形的质量要求。研究结果可为煤矿井下智能掘进技术的发展提供新的思路和方法。 展开更多
关键词 掘进机 轨迹规划 断面成形 欠挖面积 灰狼优化算法
在线阅读 下载PDF
基于改进MOGWO算法的并联机器人轨迹优化 被引量:2
2
作者 郭彤颖 叶相涛 陈宇 《组合机床与自动化加工技术》 北大核心 2025年第6期20-25,共6页
针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运... 针对并联机器人运行过程中短时间、低能耗、弱冲击等需求,提出了一种基于改进多目标灰狼算法(IMOGWO)的轨迹优化方法。首先,对并联机器人进行逆运动学求解,在笛卡尔空间选取关键点并映射至关节空间,采用4-3-3-4次多项式插值方法对其运动轨迹进行规划;其次,对多目标灰狼算法在收敛因子、围猎机制、头狼更新3个方面进行改进优化,优化后的算法具有搜索能力强、收敛速度快等优势;最终,利用改进的多目标灰狼算法对多项式轨迹进行时间-能耗-冲击多目标优化,仿真实验表明优化方法不仅缩短了机器人的运行时间,在降低能耗和减小冲击方面也取得了显著成效,使机器人总体性能得到了有效地提升。 展开更多
关键词 并联机器人 轨迹规划 改进多目标灰狼算法 多目标优化
在线阅读 下载PDF
基于GWO-LMS-RSSD的旋转机械耦合故障分离及特征强化方法
3
作者 许文 施卫华 +3 位作者 李红钢 华如南 刘厚林 董亮 《机电工程》 北大核心 2025年第4期677-685,共9页
针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号... 针对旋转机械耦合故障中较弱故障易被较强故障淹没及噪声干扰严重的问题,提出了基于灰狼优化算法(GWO)的自适应滤波最小均方(LMS)算法,结合共振稀疏分解(RSSD)的耦合故障特征分离及强化方法。首先,采用自适应滤波LMS算法对耦合故障信号进行了滤波处理,使故障特征得到了初步强化;然后,根据耦合故障的不同共振属性,利用RSSD算法将故障耦合分解为高共振分量和低共振分量,完成了耦合故障分离;特别地,针对LMS算法中参数依赖人工经验、自适应差等问题,研究了基于灰狼优化算法(GWO)的参数自适应优化方法,设计了以信噪比和均方误差构成的优化目标;最后,对稀疏分解得到的信号进行了包络解调,完成了耦合故障分离及特征强化,同时,利用模拟信号和实验信号对该方法进行了验证分析。研究结果表明:GWO-LMS-RSSD算法能用于有效降低噪声干扰,分离旋转机械耦合故障及强化故障特征。该研究成果可为强噪声干扰下耦合故障的特征分离及强化提供一种新的思路。 展开更多
关键词 耦合故障诊断 旋转机械 共振稀疏分解 自适应滤波最小均方算法 灰狼优化算法 信噪比 均方误差
在线阅读 下载PDF
基于GWO-RF的建筑施工安全事故预测模型
4
作者 王丹 潘祥莲 《中国安全科学学报》 北大核心 2025年第10期75-81,共7页
为减少建筑施工安全事故的发生,利用关联规则揭示事故关联机制,并融合优化后的随机森林(RF),预测事故发生情况。首先,以24Model为理论依据,提取388份建筑施工安全事故案例报告的致因因素;然后,采用Apriori算法挖掘事故致因因素之间的相... 为减少建筑施工安全事故的发生,利用关联规则揭示事故关联机制,并融合优化后的随机森林(RF),预测事故发生情况。首先,以24Model为理论依据,提取388份建筑施工安全事故案例报告的致因因素;然后,采用Apriori算法挖掘事故致因因素之间的相互关联作用路径;最后,利用灰狼优化算法(GWO)优化RF的超参数,构建GWO-RF建筑施工安全事故预测模型,并对事故致因因素进行特征重要性排序。结果表明:不安全行为、组织成员的安全能力、安全管理体系以及安全文化元素构成强相关条件组合;GWO能够有效优化RF的超参数,优化后建立的建筑施工安全事故预测模型(GWO-RF)预测准确率高达93.2%;特征重要性排序显示:安全教育培训对建筑施工安全事故预测的影响最大,权重为10.5%,安全融入管理、安全生产规章制度、安全生产责任制度是影响建筑施工安全事故预测的重要因素,其权重依次为7.5%、7%、6%。 展开更多
关键词 灰狼优化算法(gwo) 随机森林(RF) 建筑施工安全事故 预测模型 关联规则
在线阅读 下载PDF
基于EEMD-GWO-VMD的滚动轴承故障特征提取
5
作者 张涛 张振彬 谢剑龙 《中国工程机械学报》 北大核心 2025年第3期470-475,共6页
针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,... 针对滚动轴承工作环境恶劣、故障信号难以提取的问题,提出一种基于EEMD-GWO-VMD的滚动轴承双重降噪方法。首先,利用集合经验模态分解(EEMD)对采集到的信号进行分解,通过相关系数和峭度指标组合筛选富含故障信息的分量并进行重构。然后,以包络熵为目标函数,采用灰狼算法(GWO)优化变分模态分解(VMD)的惩罚因子和模态分解层数,并采用仿真信号对比分析VMD、GWO-VMD和EEMD-GWO-VMD这3种方法的降噪效果。最后,结合CWRU数据集和高速列车轴箱轴承台架试验数据,进一步验证EEMD-GWO-VMD降噪方法的有效性。 展开更多
关键词 滚动轴承 灰狼算法(gwo) 集成经验模态分解(EEMD) 变分模态分解(VMD)
在线阅读 下载PDF
GWO优化CNN-BiLSTM-Attenion的轴承剩余寿命预测方法 被引量:6
6
作者 李敬一 苏翔 《振动与冲击》 北大核心 2025年第2期321-332,共12页
滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来... 滚动轴承作为机械设备的重要部件,对其进行剩余使用寿命预测在企业的生产过程中变得越来越重要。目前,虽然主流的卷积神经网络(convolutional neural network, CNN)可以自动地从轴承的振动信号中提取特征,却不能给特征分配不同的权重来提高模型对重要特征的关注程度,对于长时间序列容易丢失重要信息。另外,神经网络中隐藏层神经元个数、学习率以及正则化参数等超参数还需要依靠人工经验设置。为了解决上述问题,提出基于灰狼优化(grey wolf optimizer, GWO)算法、优化集合CNN、双向长短期记忆(bidirectional long short term memory, BiLSTM)网络和注意力机制(Attention)轴承剩余使用寿命预测方法。首先,从原始振动信号中提取时域、频域以及时频域特征指标构建可选特征集;然后,通过构建考虑特征相关性、鲁棒性和单调性的综合评价指标筛选出高于设定阈值的轴承退化敏感特征集,作为预测模型的输入;最后,将预测值和真实值的均方误差作为GWO算法的适应度函数,优化预测模型获得最优隐藏层神经元个数、学习率和正则化参数,利用优化后模型进行剩余使用寿命预测,并在公开数据集上进行验证。结果表明,所提方法可在非经验指导下获得最优的超参数组合,优化后的预测模型与未进行优化模型相比,平均绝对误差与均方根误差分别降低了28.8%和24.3%。 展开更多
关键词 灰狼优化(gwo)算法 卷积神经网络(CNN) 双向长短期记忆(BiLSTM)网络 自注意力机制 剩余使用寿命预测
在线阅读 下载PDF
基于GWO-DBN的反导装备体系效能评估方法研究 被引量:2
7
作者 赵海燕 周峰 +2 位作者 杨文静 刘迪 杨添元 《现代防御技术》 北大核心 2025年第2期45-54,共10页
针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,... 针对现有效能预测方法难以反映反导装备体系实际效能的问题,提出一种基于“数据驱动+深度学习”的反导装备体系效能评估方法。在大量实验数据抽取、处理、分析的基础上,构建灰狼优化算法-深度置信网络(GWO-DBN)模型对数据进行训练学习,以此获得反导装备体系效能的非线性拟合,并以某次反导体系效能评估为例进行了仿真实验。结果表明,该评估方法可行、可靠,能够为反导装备体系论证和改进提供较高的参考价值和借鉴意义。 展开更多
关键词 反导装备体系 效能评估 数据驱动 深度学习 灰狼优化算法(gwo) 深度置信网络(DBN)
在线阅读 下载PDF
基于改进PSO-GWO算法的渠系优化配水模型研究 被引量:1
8
作者 姚成宝 岳春芳 +1 位作者 张胜江 郑秋丽 《人民黄河》 北大核心 2025年第1期128-133,共6页
为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最... 为减少渠系输配水过程中的水量损失,针对闸门调控时间各异和频繁启闭的问题,以精河灌区茫乡团结支渠支斗两级渠系渗漏损失量最小为目标建立渠系配水模型,首次采用“组间轮灌,组内续灌”的配水方式,通过改进PSO-GWO算法求解,确定斗渠最优轮灌编组、配水流量和灌水时间等重要参数,得出渠系渗漏损失量和算法迭代次数,并与粒子群算法、灰狼算法的求解结果进行对比。改进模型使灌水时间缩短了0.62 d,支斗两级渠系水利用系数提高了0.168,改进PSO-GWO算法迭代次数为3次、渠系渗漏总量为16.69万m^(3),优于传统算法的配水结果。实例应用情况表明,改进算法具有更强的寻优能力和收敛性,并且模型在满足高效配水的同时,减少了闸门启闭次数,实现了集中调控,配水模式便捷,应用价值较高。 展开更多
关键词 渠系配水 渗漏损失 轮灌编组 改进PSO-gwo算法 粒子群算法 灰狼算法
在线阅读 下载PDF
基于改进PSO-LGWO算法的光伏最大功率点跟踪研究 被引量:1
9
作者 王钰霖 孙丽颖 《太阳能学报》 北大核心 2025年第3期328-334,共7页
在光伏阵列受到不均匀太阳辐照时,其输出特性曲线会出现多个峰值点,常规的最大功率点跟踪方法(MPPT)可能会陷入局部峰值点,导致光伏阵列不能在最大功率点下运行。为解决此类问题,提出一种基于改进粒子群优化的灰狼算法与莱维飞行模块相... 在光伏阵列受到不均匀太阳辐照时,其输出特性曲线会出现多个峰值点,常规的最大功率点跟踪方法(MPPT)可能会陷入局部峰值点,导致光伏阵列不能在最大功率点下运行。为解决此类问题,提出一种基于改进粒子群优化的灰狼算法与莱维飞行模块相结合的算法(PSO-LGWO)。该算法在函数测试和静态阴影测试中,相较于其他灰狼算法都可在保证算法跟踪精度的同时提升收敛速度;在动态阴影测试中,相较于实际光伏发电站中常见的MPPT方法,可以跳出局部最优解,且在太阳辐照度变化较大时,在保证算法跟踪精度的同时具有更快的收敛速度。 展开更多
关键词 最大功率点跟踪 太阳电池 太阳能发电 灰狼算法 粒子群算法
在线阅读 下载PDF
基于GWO-RBF神经网络的城市机动车能耗预测
10
作者 李四洋 张瑞 +2 位作者 李雅男 陈贺鹏 陈艳艳 《科学技术与工程》 北大核心 2025年第8期3480-3486,共7页
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net... 在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。 展开更多
关键词 机动车 能耗 径向基函数神经网络(RBFNN) 灰狼算法(gwo)
在线阅读 下载PDF
一种神经网络的多方向GWO优化方法
11
作者 张晓丽 闻俊 +3 位作者 朱贵富 许诺 聂佳磊 杨璨 《小型微型计算机系统》 北大核心 2025年第4期833-840,共8页
针对标准的GWO算法不稳定性和表现性能不佳问题,本文从多个方向提出优化路径.首先,为灰狼群体中增加最优解、候选狼群定义步长、候选狼群步长的权值进行优化、以及各优化方向相结合,对标准GWO算法进行优化改进,总共形成8种优化算法;然... 针对标准的GWO算法不稳定性和表现性能不佳问题,本文从多个方向提出优化路径.首先,为灰狼群体中增加最优解、候选狼群定义步长、候选狼群步长的权值进行优化、以及各优化方向相结合,对标准GWO算法进行优化改进,总共形成8种优化算法;然后将优化算法融入RNN、MLP和CMLP 3种神经网络中,总共构成24种预测模型;最后通过公共数据集进行了240次测试,结果表明,不同方向的优化可以提高各个神经网络预测模型的准确率及稳定性,具有更好的实用性. 展开更多
关键词 灰狼优化算法 神经网络 预测模型
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
12
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
基于H-WOA-GWO和区段修正策略的配电网故障定位研究
13
作者 宋铭楷 朱成杰 《广西师范大学学报(自然科学版)》 北大核心 2025年第4期24-37,共14页
分布式电源的并网和逐渐扩大的配电网规模使得传统故障定位方法难度增大。针对这一问题,本文提出一种多策略改进的混合鲸鱼灰狼优化算法(H-WOA-GWO)结合区段修正的故障定位方法。首先将WOA包围收缩和螺旋更新机制融入GWO,构建混合算法... 分布式电源的并网和逐渐扩大的配电网规模使得传统故障定位方法难度增大。针对这一问题,本文提出一种多策略改进的混合鲸鱼灰狼优化算法(H-WOA-GWO)结合区段修正的故障定位方法。首先将WOA包围收缩和螺旋更新机制融入GWO,构建混合算法来有效改善收敛速度;然后运用非线性收敛因子、改进领导狼位置和自适应狩猎权重来增强搜索自适应性、全局开发能力和缩短迭代时间。建立不同定位模型选择基于评价函数值法构建目标函数,通过分析伪最优解潜在信息提出区段修正策略。经仿真验证,三重故障下:混合算法正确率高于单一算法11个百分点,迭代时间可节约0.3267 s;结合区段修正策略后正确率和求解时间较单纯混合算法分别提高17个百分点和74.88%,表明改进混合算法和修正策略可准确识别多重和多畸变节点故障,具备高效的求解速度和稳定性。 展开更多
关键词 灰狼优化算法 鲸鱼优化算法 容错性 分布式电源 故障定位
在线阅读 下载PDF
基于GWO-VMD的毫米波雷达心率检测
14
作者 黄龙 付君雅 +2 位作者 袁成林 吕骞 高军峰 《电子科技大学学报》 北大核心 2025年第4期634-640,共7页
为实现非接触式高精度的生命体征测量方法,提出了一种优化变分模态分解(VMD)的心跳信号分离与重构方法。通过对雷达的中频信号进行目标识别、相位提取、相位差分、相位平滑等一系列信号预处理,根据心跳的频率设计带通滤波器,并利用灰狼... 为实现非接触式高精度的生命体征测量方法,提出了一种优化变分模态分解(VMD)的心跳信号分离与重构方法。通过对雷达的中频信号进行目标识别、相位提取、相位差分、相位平滑等一系列信号预处理,根据心跳的频率设计带通滤波器,并利用灰狼优化算法(GWO)和模糊熵(FE)函数优化了VMD的参数,最后利用线性调频Z变换对心率分量进行频谱细化得到实际心率。与心电监护设备和多种算法进行对比来验证该算法的优越性。经过334组实验,该方法的均方根误差为2.59,平均绝对百分比误差为2.65%,表明该方法在准确性和实时性上均表现优异。 展开更多
关键词 毫米波雷达 生命体征 变分模态分解 信号分解与重构 灰狼优化算法
在线阅读 下载PDF
基于GWO-RBF神经网络的车用燃料电池剩余使用寿命预测 被引量:1
15
作者 王文 张晗 +3 位作者 张擘 李斌 杨继斌 王乐 《科学技术与工程》 北大核心 2025年第14期5897-5904,共8页
为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的... 为研究车用质子交换膜燃料电池的预测和健康管理问题,提出了一种以相对功率损耗率为健康指标、灰狼优化(grey wolf optimizer,GWO)算法与径向基(radial basis function,RBF)神经网络相结合的方法(GWO-RBF),对车用质子交换膜燃料电池的剩余使用寿命进行预测。首先,通过对初始时刻燃料电池极化曲线的分析,构建以相对功率损耗率为健康指标的计算方法,并采用灰色关联度分析方法验证其可行性。然后,应用GWO算法优化的RBF神经网络预测车用质子交换膜燃料电池的剩余使用寿命。最后,采用两组数据集对提出的方法进行了验证分析。结果表明:与其他方法相比,提出的基于GWO-RBF方法的平均绝对百分比误差、均方根误差最小,决定系数最大,相对误差小于1%。可见本文方法能够以较少的数据集、较高的精度预测车用质子交换膜燃料电池的剩余使用寿命。 展开更多
关键词 燃料电池 寿命预测 相对功率损耗率 灰狼优化算法 径向基神经网络
在线阅读 下载PDF
基于PDM-GWO算法FPC软排线缺陷检测方法研究
16
作者 欧幸福 张淼 唐戎 《包装工程》 北大核心 2025年第19期226-238,共13页
目的提升柔性印刷电路(FPC)软排线缺陷图像的分割与检测精度、效率,解决传统方法在低对比度、强干扰及细微缺陷图像中的分割模糊和检测误差等问题,提出一种高鲁棒性、高效率的包装缺陷处理方法。方法构建基于并行动态角色记忆灰狼优化算... 目的提升柔性印刷电路(FPC)软排线缺陷图像的分割与检测精度、效率,解决传统方法在低对比度、强干扰及细微缺陷图像中的分割模糊和检测误差等问题,提出一种高鲁棒性、高效率的包装缺陷处理方法。方法构建基于并行动态角色记忆灰狼优化算法(PDM-GWO)的图像分割和缺陷检测方法。通过动态角色分配和历史位置记忆提升优化能力,引入主从并行架构,提高计算效率;分割阶段采用PDM-GWO优化多阈值策略提取清晰边缘;在检测阶段,基于边缘检测获取排线坐标,融合RANSAC拟合提取几何特征,结合Z-score统计分析,实现多类缺陷的识别。结果多组图像实验证明,该方法在PSNR、SSIM、IoU等3项指标上的平均值为22.42 dB、0.964、0.933,均优于标准GWO和典型改进型算法。在缺陷检测方面,平均检测精度达到0.9906,处理速度为9.63帧/s,优于YOLOv9、Faster-RCNN等主流方法。结论所提方法在图像分割质量、检测准确率、运行效率等方面均展现出显著优势,适用于包装自动线复杂工况下的微小缺陷检测,具备良好的工程实用性和推广价值。 展开更多
关键词 柔性印刷电路 包装缺陷检测 图像分割 灰狼优化算法 动态角色 历史记忆 并行计算
在线阅读 下载PDF
基于WOA-IGWO-LSTM的作业车间实时调度
17
作者 郑华丽 魏光艳 +2 位作者 孙东 王明君 叶春明 《机床与液压》 北大核心 2025年第2期54-63,共10页
针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特... 针对作业车间实时调度问题,基于长短期记忆(LSTM)神经网络,提出WOA-IGWO-LSTM算法。根据调度问题和算法设计三元样本数据结构,以性能指标和生产系统状态属性作为输入特征,输出当前决策点的最佳调度规则。利用鲸鱼优化算法(WOA)对输入特征进行降维,以提高模型泛化能力和准确性。引入非线性收敛因子设计一种改进灰狼算法(IGWO)用于调节LSTM参数,提高算法实用性。最后,通过对比试验验证了WOA、IGWO以及WOA-IGWO-LSTM的有效性,并利用工业案例数据验证了WOA-IGWO-LSTM对于解决作业车间实时调度问题的有效性和可行性。 展开更多
关键词 长短期记忆(LSTM)神经网络 鲸鱼优化算法(WOA) 改进灰狼算法 作业车间实时调度
在线阅读 下载PDF
PCA+GWO集成特征选择和模型堆叠的客户流失预测
18
作者 刘梅 郑立君 +1 位作者 段永良 段红秀 《计算机工程与应用》 北大核心 2025年第15期329-342,共14页
客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法... 客户的长期稳定对酒店营收和提高竞争力具有重要意义。在客户流失预测研究中,生产环境采集的数据存在数据量大、维度高、噪点多等问题,导致机器模型的准确率、稳定性和泛化能力下降。针对此类问题,设计了基于PCA+GWO的集成特征选择方法,并用模型堆叠构建了客户流失预测模型。提出了利用Pearson系数和随机森林(RF)的特征重要性来确定需要降维特征组的方法。改进了灰狼优化算法(GWO)中的灰狼位置更新机制和收敛条件,并将其应用于选择最佳特征子集的过程中。选取了10种不同的机器学习模型进行训练,挑选出F1-score表现最优的模型作为基模型,进行元模型训练。实验结果表明,使用某酒店客户信息数据集时,改进后的GWO算法收敛速度显著提升,且预测模型的F1-score达到了97.9%,该模型具有较强的泛化能力。 展开更多
关键词 特征选择 随机森林(RF) 主成分分析(PCA) 灰狼优化(gwo)算法 模型堆叠
在线阅读 下载PDF
基于TDEGWO-SVM的滚动轴承故障诊断
19
作者 邢鑫 王亮 耿耿 《计算机应用》 北大核心 2025年第S1期349-353,共5页
作为海上油气生产平台动设备的关键零部件,轴承的性能与动设备的工作状态强相关。针对动设备轴承故障诊断中单类型特征表征不全面、模型优化效率低、模型易陷入局部最优值和变转速工况故障诊断应用较少的问题,提出一种基于Tent混沌映射... 作为海上油气生产平台动设备的关键零部件,轴承的性能与动设备的工作状态强相关。针对动设备轴承故障诊断中单类型特征表征不全面、模型优化效率低、模型易陷入局部最优值和变转速工况故障诊断应用较少的问题,提出一种基于Tent混沌映射差分进化灰狼优化和支持向量机(TDEGWO-SVM)的滚动轴承故障诊断模型。首先,从轴承振动信号中提取时域特征、变分模态分解(VMD)能量熵特征和分形维数特征,并在此基础上构建数据集;其次,针对传统灰狼优化(GWO)算法存在的早熟收敛和对复杂问题的收敛精度较低的问题,引入Tent混沌映射和差分进化(DE)思想,构建Tent混沌映射差分进化灰狼优化(TDEGWO)算法实现高斯核支持向量机(SVM)模型参数的自适应寻优;最后,通过凯斯西储大学的轴承振动数据集验证所提模型的性能。实验结果表明,相较于极端梯度提升树(XGBoost)、随机森林和自编码器(AE)网络等对比模型,基于TDEGWO-SVM的故障诊断模型能有效实现滚动轴承的多工况故障诊断。 展开更多
关键词 故障诊断 支持向量机 Tent混沌映射 差分进化 灰狼优化 分形维数
在线阅读 下载PDF
基于GWO-XGBoost和MOPSO算法的脱硫系统运行优化
20
作者 张婉 钱玉良 +1 位作者 金鑫 彭道刚 《化学工程》 北大核心 2025年第9期77-82,共6页
燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化... 燃煤火电机组脱硫系统存在无法适应实时变化的工况需求而增加设备投入或过量投入物料的情况。为了保证系统安全稳定运行,针对这一问题,提出一种基于GWO-XGBoost(灰狼优化-极端梯度提升树)和MOPSO(多目标粒子群)算法的脱硫系统运行优化方法。利用GWO对XGBoost算法的超参数进行优化,进一步提升XGBoost模型的预测性能,建立基于GWO-XGBoost算法的脱硫效率预测模型。以脱硫成本最低和脱硫效率最高为优化目标,采用MOPSO算法建立优化模型并得到最佳运行参数,为循环浆液泵和氧化风机的运行提供指导。以某典型工况为例,在保证出口SO 2排放浓度达标的情况下,使用优化的运行策略,运行成本可降低385.23元/h。结果表明:该脱硫效率预测模型预测效果较佳,该优化模型能够对燃煤电厂脱硫过程提供科学的运行指导,节省脱硫过程中的物耗和关键设备的能耗,提高脱硫系统运行操作方案的可靠性和经济性。 展开更多
关键词 湿法脱硫系统 运行优化 氧化风机 循环浆液泵 gwo-XGBoost算法 MOPSO算法
在线阅读 下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部