A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifet...A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.展开更多
An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-al...An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-algorithms.One is the multi-hop partition subspaces clustering algorithm for ensuring local energybalanced consumption ascribed to the deployment from another algorithm of distributed locating deployment based on efficient communication coverage probability(DLD-ECCP).DLD-ECCP makes use of the characteristics of Markov chain and probabilistic optimization to obtain the optimum topology and number of sensor nodes.Through simulation,the relative data demonstrate the advantages of the proposed approaches on saving hardware resources and energy consumption of networks.展开更多
基金Projects(61101104,61100213) supported by the National Natural Science Foundation of ChinaProject(NY211050) supported by Fund of Nanjing University of Posts and Telecommunications,China
文摘A distributed local adaptive transmit power assignment (LA-TPA) strategy was proposed to construct a topology with better performance according to the environment and application scenario and prolong the network lifetime.It takes the path loss exponent and the energy control coefficient into consideration with the aim to accentuate the minimum covering district of each node more accurately and precisely according to various network application scenarios.Besides,a self-healing scheme that enhances the robustness of the network was provided.It makes the topology tolerate more dead nodes than existing algorithms.Simulation was done under OMNeT++ platform and the results show that the LA-TPA strategy is more effective in constructing a well-performance network topology based on various application scenarios and can prolong the network lifetime significantly.
基金supported by the Major State Basic Research Program of China(B1420080204)National Science Fund for Distinguished Young Scholars(60725415)the National Natural Science Foundation of China(60606006)
文摘An effective algorithm based on signal coverage of effective communication and local energy-consumption saving strategy is proposed for the application in wireless sensor networks.This algorithm consists of two sub-algorithms.One is the multi-hop partition subspaces clustering algorithm for ensuring local energybalanced consumption ascribed to the deployment from another algorithm of distributed locating deployment based on efficient communication coverage probability(DLD-ECCP).DLD-ECCP makes use of the characteristics of Markov chain and probabilistic optimization to obtain the optimum topology and number of sensor nodes.Through simulation,the relative data demonstrate the advantages of the proposed approaches on saving hardware resources and energy consumption of networks.
基金Supported by the National HighTech Research and Development Plan of China under Grant No.2006AA01Z227(国家高技术研究发展计划(863))the Natural Science Foundation of Hu’nan Province of China under Grant No.06JJ20049(湖南省自然科学基金)