To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomple...To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.展开更多
Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed ...Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.展开更多
This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of g...This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of global deployment or topology, etc). We propose the algorithms and show mathematical analysis to support our claims. The paper ends with simulation studies and discussion of results.展开更多
Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless se...Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.展开更多
In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification probl...In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.展开更多
Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce...Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.展开更多
Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network ...Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.展开更多
In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving ...In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.展开更多
Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial ...Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.展开更多
Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n...Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.展开更多
A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the...A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.展开更多
Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is rega...Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is regarded suitable for WSNs due to its good performance in energy conservation. In this work, an adequately flexible mechanism for clustering WSNs is designed, in which some creative or promotional metrics are utilized, such as cluster head selection algorithm, cluster optional reconstruction, interested data transmission, multiple path routing protocol. All these strategies were cooperated to maximize energy saving of whole system. An appropriate MAC protocol for this mechanism is proposed, by flexibly switching the status of diverse sensor nodes in different strategies. The simulation results show that the proposed MAC protocol is suitable for clustering WSNs and performs well in aspects of energy efficiency, flexibility and scalability.展开更多
In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such ...In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.展开更多
This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communicati...This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communication radius is adaptively increasing to add the localizability. The localization process includes three steps: firstly, divide the whole globally rigid graph into several small rigid blocks; secondly, set up the local coordinate systems and transform them to global coordinate system; finally, use the quadrilateration iteration technology to locate the nodes in the wireless sensor network. This algorithm has the advantages of low energy consumption, low computational complexity as well as high expandability and high localizability. Moreover, it can achieve the unique and accurate localization. Finally, some simulations are provided to demonstrate the effectiveness of the proposed algorithm.展开更多
Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inn...Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inner characteristics of sensor networks: deployed in hostile environments, limited resource and ad hoc nature. This paper investigates the constraints and special requirements of key management in sensor network environment, and some basic evaluation metrics are introduced. The key pre-distribution scheme is thought as the most suitable solution for key management problem in wireless sensor networks. It can be classified into four classes: pure probabilistic key pre-distribution, polynomial-based, Blom's matrix-based, and deterministic key pre-distribution schemes. In each class of methods, the related research papers are discussed based on the basic evaluation metrics. Finally, the possible research directions in key management are discussed.展开更多
To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to tr...To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.展开更多
基金supported by the National Natural Science Fundation of China (60974082 60874085)+2 种基金the Fundamental Research Funds for the Central Universities (K50510700004)the Technology Plan Projects of Guangdong Province (20110401)the Team Project of Hanshan Normal University (LT201001)
文摘To avoid uneven energy consuming in wireless sen- sor networks, a clustering routing model is proposed based on a Bayesian game. In the model, Harsanyi transformation is introduced to convert a static game of incomplete information to the static game of complete but imperfect information. In addition, the existence of Bayesian nash equilibrium is proved. A clustering routing algorithm is also designed according to the proposed model, both cluster head distribution and residual energy are considered in the design of the algorithm. Simulation results show that the algorithm can balance network load, save energy and prolong network lifetime effectively.
基金supported by the National Natural Science Foundation of China (60775047)Hunan Provincial Natural Science Foundation of China (07JJ6111)
文摘Due to the mutual interference and sharing of wireless links in TDMA wireless sensor networks, conflicts will occur when data messages are transmitting between nodes. The broadcast scheduling problem (BSP) is aimed to schedule each node in different slot of fixed length frame at least once, and the objective of BSP is to seek for the optimal feasible solution, which has the shortest length of frame slots, as well as the maximum node transmission. A two-stage mixed algorithm based on a fuzzy Hopfield neural network is proposed to solve this BSP in wireless sensor network. In the first stage, a modified sequential vertex coloring algorithm is adopted to obtain a minimal TDMA frame length. In the second stage, the fuzzy Hopfleld network is utilized to maximize the channel utilization ratio. Experimental results, obtained from the running on three benchmark graphs, show that the algorithm can achieve better performance with shorter frame length and higher channel utilizing ratio than other exiting BSP solutions.
文摘This paper proposes fault tolerant algorithms for routing mobile agents in a single channel wireless sensor network which cover every node in the network. These algorithms use local knowledge (assume no knowledge of global deployment or topology, etc). We propose the algorithms and show mathematical analysis to support our claims. The paper ends with simulation studies and discussion of results.
文摘Energy saving is the most important issue in research and development for wireless sensor networks. A power control mechanism can reduce the power consumption of the whole network. Because the character of wireless sensor networks is restrictive energy, this paper proposes a distributed power control algorithm based on game theory for wireless sensor networks which objects of which are reducing power consumption and decreasing overhead and increasing network lifetime. The game theory and OPNET simulation shows that the power control algorithm converges to a Nash Equilibrium when decisions are updated according to a better response dynamic.
基金Supported in part by Science & Technology Department of Shanghai (05dz15004)
文摘In wireless sensor networks, target classification differs from that in centralized sensing systems because of the distributed detection, wireless communication and limited resources. We study the classification problem of moving vehicles in wireless sensor networks using acoustic signals emitted from vehicles. Three algorithms including wavelet decomposition, weighted k-nearest-neighbor and Dempster-Shafer theory are combined in this paper. Finally, we use real world experimental data to validate the classification methods. The result shows that wavelet based feature extraction method can extract stable features from acoustic signals. By fusion with Dempster's rule, the classification performance is improved.
基金supported by the National Basic Research Program of China (973 Program) (2010CB731800)the National Natural Science Foundation of China (60934003+2 种基金 60974123 60804010)the Hebei Provincial Educational Foundation of China (2008147)
文摘Remote tracking for mobile targets is one of the most important applications in wireless sensor networks (WSNs). A target tracking protoco–exponential distributed predictive tracking (EDPT) is proposed. To reduce energy waste and response time, an improved predictive algorithm–exponential smoothing predictive algorithm (ESPA) is presented. With the aid of an additive proportion and differential (PD) controller, ESPA decreases the system predictive delay effectively. As a recovery mechanism, an optimal searching radius (OSR) algorithm is applied to calculate the optimal radius of the recovery zone. The simulation results validate that the proposed EDPT protocol performes better in terms of track failed ratio, energy waste ratio and enlarged sensing nodes ratio, respectively.
基金supported by the National Natural Science Foundation of China(61571068)the Innovative Research Projects of Colleges and Universities in Chongqing(12A19369)
文摘Wireless sensor networks (WSN) provide an approachto collecting distributed monitoring data and transmiting them tothe sink node. This paper proposes a WSN-based multi-hop networkinfrastructure, to increase network lifetime by optimizing therouting strategy. First, a network model is established, an operatingcontrol strategy is devised, and energy consumption characteristicsare analyzed. Second, a fast route-planning algorithm isproposed to obtain the original path that takes into account the remainingenergy of communicating nodes and the amount of energyconsumed in data transmission. Next, considering the amount ofenergy consumed by an individual node and the entire network,a criterion function is established to describe node performanceand to evaluate data transmission ability. Finally, a route optimizingalgorithm is proposed to increase network lifetime by adjusting thetransmission route in protection of the weak node (the node withlow transmission ability). Simulation and comparison experimentalresults demonstrate the good performance of the proposed algorithmsto increase network lifetime.
基金Project(60673164)supported by the National Natural Science Foundation of ChinaProject(20060533057)supported by the Specialized Research Foundation for the Doctoral Program of Higher Education of China
文摘In the application of periodic data-gathering in sensor networks,sensor nodes located near the sink have to forward the data received from all other nodes to the sink,which depletes their energy very quickly.A moving scheme for the sink based on local residual energy was proposed.In the scheme,the sink periodically moves to a new location with the highest stay-value defined by the average residual energy and the number of neighbors.The scheme can balance energy consumption and prevent nodes around sink from draining their energy very quickly in the networks.The simulation results show that the scheme can prolong the network lifetime by 26%-65%compared with the earlier schemes where the sink is static or moves randomly.
基金Supported by National Natural Science Foundation of China (60602061) and National High Technology Research and Development Program of China (863 Program) (2006AA01Z413)
文摘Broadcasting is an important operation and been widely used in wireless sensor networks (WSNs). These networks are power constrained as nodes operate with limited battery power. Wireless sensor networks are spatial graphs that have much more clustered and much high path-length characteristics. After considering energy- efficient broadcasting in such networks, by combining the small-world characteristic of WSNs and the properties of ant algorithm to quickly identify an optimal path, small-world power-aware broadcast algorithm is introduced and evaluated. Given different densities of network, simulation results show that our algorithm significantly improves life of networks and also reduces communication distances and power consumption.
基金supported by the National Science Foundation for Outstanding Young Scientists (60425310)the Science Foundation for Post-doctoral Scientists of Central South University (2008)
文摘Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation, ChinaProject(NCET-06-0686) supported by Program for New Century Excellent Talents in UniversityProject(IRT0661) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A prediction based energy-efficient target tracking protocol in wireless sensor networks(PET) was proposed for tracking a mobile target in terms of sensing and communication energy consumption.In order to maximize the lifetime of a wireless sensor network(WSN),the volume of messages and the time for neighbor discovery operations were minimized.The target was followed in a special region known as a face obtained by planarization technique in face-aware routing.An election process was conducted to choose a minimal number of appropriate sensors that are the nearest to the target and a wakeup strategy was proposed to wakeup the appropriate sensors in advance to track the target.In addition,a tracking algorithm to track a target step by step was introduced.Performance analysis and simulation results show that the proposed protocol efficiently tracks a target in WSNs and outperforms some existing protocols of target tracking with energy saving under certain ideal situations.
文摘Energy efficiency is a primary consideration in a wireless sensor network (WSN). This is also a major parameter when designing a medium access control (MAC) protocol for WSNs. Hierarchical clustering structure is regarded suitable for WSNs due to its good performance in energy conservation. In this work, an adequately flexible mechanism for clustering WSNs is designed, in which some creative or promotional metrics are utilized, such as cluster head selection algorithm, cluster optional reconstruction, interested data transmission, multiple path routing protocol. All these strategies were cooperated to maximize energy saving of whole system. An appropriate MAC protocol for this mechanism is proposed, by flexibly switching the status of diverse sensor nodes in different strategies. The simulation results show that the proposed MAC protocol is suitable for clustering WSNs and performs well in aspects of energy efficiency, flexibility and scalability.
基金Projects(61272139,61070199,61103182)supported by the National Natural Science Foundation of ChinaProject(2013ZX01028001-002)supported by the National Science and Technology Major Projects of China+1 种基金Project(2011AA01A103)supported by theNational High-Tech Research and Development Plan of ChinaProject(11JJ7003)supported by Hunan Provincial Natural ScienceFoundation of China
文摘In recent years,using message ferries as mechanical carriers of data has been shown to be an effective way to collect information in sparse wireless sensor networks.As the sensors are far away from each other in such highly partitioned scenario,a message ferry needs to travel a long route to access all the sensors and carry the data collected from the sensors to the sink.Typically,practical constraints(e.g.,the energy)preclude a ferry from visiting all sensors in a single tour.In such case,the ferry can only access part of the sensors in each tour and move back to the sink to get the energy refilled.So,the energy-constrained ferry route design(ECFRD)problem is discussed,which leads to the optimization problem of minimizing the total route length of the ferry,while keeping the route length of each tour below a given constraint.The ECFRD problem is proved to be NP-hard problem,and the integer linear programming(ILP)formulation is given.After that,efficient heuristic algorithms are proposed to solve this problem.The experimental results show that the performances of the proposed algorithms are effective in practice compared to the optimal solution.
基金supported by the National Natural Science Foundation of China(61375105 61403334)
文摘This paper investigates the node localization problem for wireless sensor networks in three-dimension space. A distributed localization algorithm is presented based on the rigid graph. Before location, the communication radius is adaptively increasing to add the localizability. The localization process includes three steps: firstly, divide the whole globally rigid graph into several small rigid blocks; secondly, set up the local coordinate systems and transform them to global coordinate system; finally, use the quadrilateration iteration technology to locate the nodes in the wireless sensor network. This algorithm has the advantages of low energy consumption, low computational complexity as well as high expandability and high localizability. Moreover, it can achieve the unique and accurate localization. Finally, some simulations are provided to demonstrate the effectiveness of the proposed algorithm.
文摘Recent advancements in wireless communication and microchip techniques have accelerated the development of wireless sensor networks (WSN). Key management in WSN is a critical and challenging problem because of the inner characteristics of sensor networks: deployed in hostile environments, limited resource and ad hoc nature. This paper investigates the constraints and special requirements of key management in sensor network environment, and some basic evaluation metrics are introduced. The key pre-distribution scheme is thought as the most suitable solution for key management problem in wireless sensor networks. It can be classified into four classes: pure probabilistic key pre-distribution, polynomial-based, Blom's matrix-based, and deterministic key pre-distribution schemes. In each class of methods, the related research papers are discussed based on the basic evaluation metrics. Finally, the possible research directions in key management are discussed.
基金Project (61201086) supported by the National Natural Science Foundation of ChinaProject (201506375060) supported by the China Scholarship Council+2 种基金Project (2013B090500007) supported by Guangdong Provincial Science and Technology Project,ChinaProject (2014509102205) supported by the Dongguan Municipal Project on the Integration of Industry,Education and Research,ChinaProject (2017GK5019) supported by 2017 Hunan-Tech&Innovation Investment Project,China
文摘To the existing spectrum sharing schemes in wireless-powered cognitive wireless sensor networks,the protocols are limited to either separate the primary and the secondary transmission or allow the secondary user to transmit signals in a time slot when it forwards the primary signal.In order to address this limitation,a novel cooperative spectrum sharing scheme is proposed,where the secondary transmission is multiplexed with both the primary transmission and the relay transmission.Specifically,the process of transmission is on a three-phase time-switching relaying basis.In the first phase,a cognitive sensor node SU1 scavenges energy from the primary transmission.In the second phase,another sensor node SU2 and primary transmitter simultaneously transmit signals to the SU1.In the third phase,the node SU1 can assist the primary transmission to acquire the opportunity of spectrum sharing.Joint decoding and interference cancellation technique is adopted at the receivers to retrieve the desired signals.We further derive the closed-form expressions for the outage probabilities of both the primary and secondary systems.Moreover,we address optimization of energy harvesting duration and power allocation coefficient strategy under performance criteria.An effective algorithm is then presented to solve the optimization problem.Simulation results demonstrate that with the optimized solutions,the sensor nodes with the proposed cooperative spectrum sharing scheme can utilize the spectrum in a more efficient manner without deteriorating the performance of the primary transmission,as compared with the existing one-directional scheme in the literature.