Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of h...Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.展开更多
The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the e...The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the emergence of digital twin networks(DTNs)that create digital-physical network mappings.While DTNs enable performance analysis through emulation testbeds,current research focuses on network-level systems,neglecting equipment-level emulation of critical components like core switches and routers.To address this issue,we propose v Fabric(short for virtual switch),a digital twin emulator for high-capacity core switching equipment.This solution implements virtual switching and network processor(NP)chip models through specialized processes,deployable on single or distributed servers via socket communication.The v Fabric emulator can realize the accurate emulation for the core switching equipment with 720 ports and 100 Gbit/s per port on the largest scale.To our knowledge,this represents the first digital twin emulation framework specifically designed for large-capacity core switching equipment in communication networks.展开更多
With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling an...With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.展开更多
Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/...Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.展开更多
To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this st...To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.展开更多
We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton state...We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.展开更多
We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave ...We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.展开更多
Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimen...Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.展开更多
Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For th...Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.展开更多
Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through A...Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T_(3) lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital...The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.展开更多
Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architectu...Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.展开更多
In order to study the influence of stochastic disturbance and environment switching on the HPV infection and provide a theoretical basis for the development of effective HPV disease prevention measures,in this paper w...In order to study the influence of stochastic disturbance and environment switching on the HPV infection and provide a theoretical basis for the development of effective HPV disease prevention measures,in this paper we establish a kind of two-sex stochastic HPV epidemic model with white noise and Markov switching.We show that the model has a unique local positive solution and a unique global positive solution.Then we identify the threshold conditions for the persistence of the HPV epidemic,and verify the persistence of the disease using the Lyapunov method and the Ito^formula.At last,the numerical simulation is carried out to illustrate the rationality of the theoretical results.展开更多
基金National Natural Science Foundation of China(No.52303144)Department of Science and Technology of Jilin Province(Nos YDZJ202301ZYTS295 and 20230508188RC)。
文摘Convertible hydrogel supercapacitors have emerged as promising energy storage devices in switches,diodes,and transistors.However,inherent weaknesses in ionic conductivity,mechanical properties,and water retention of hydrogel electrolytes seriously hinder their development.Inspired by the hardness conversion of sea cucumber skin,a conductivity and mechanics dual-tunable salt gel electrolyte is successfully designed.The salt gel presents a reversible switching of conductors-insulators and a mechanical regulation between softness and hardness via the dissolution-crystallization transition of sodium acetate trihydrate(SAT).Meanwhile,the salt gels spontaneously grow a layer of“armor”through saturated phase-change salt crystals effectively reducing water evaporation of hydrogel electrolytes.Furthermore,this phase-change soft-rigid conversion strategy will expand the capabilities of gel-based flexible supercapacitors(area capacitance:258.6 mF cm^(-2)),and the capacitance retention rate could still reach 86.9%after 3000 cycles at high temperatures.Moreover,the salt gel supercapacitor is potentially used in over-heat alarm systems.It is anticipated that the strategy of conductivity and mechanics of dual-tunable salt gel would provide a new perspective on the development of energy storage devices,wearable electronics,and flexible robots.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant Nos.62171085,62272428,62001087,U20A20156,and 61871097the ZTE Industry-University-Institute Cooperation Funds under Grant No.HC-CN-20220722010。
文摘The proliferation of heterogeneous networks,such as the Internet of Things(IoT),unmanned aerial vehicle(UAV)networks,and edge networks,has increased the complexity of network operation and administration,driving the emergence of digital twin networks(DTNs)that create digital-physical network mappings.While DTNs enable performance analysis through emulation testbeds,current research focuses on network-level systems,neglecting equipment-level emulation of critical components like core switches and routers.To address this issue,we propose v Fabric(short for virtual switch),a digital twin emulator for high-capacity core switching equipment.This solution implements virtual switching and network processor(NP)chip models through specialized processes,deployable on single or distributed servers via socket communication.The v Fabric emulator can realize the accurate emulation for the core switching equipment with 720 ports and 100 Gbit/s per port on the largest scale.To our knowledge,this represents the first digital twin emulation framework specifically designed for large-capacity core switching equipment in communication networks.
基金supported by the Chinese Civil Aircraft Project(No.MJ-2017-S49).
文摘With the advancement of more electric aircraft(MEA)technology,the application of electro-hydrostatic actuators(EHAs)in aircraft actuation systems has become increasingly prevalent.This paper focuses on the modeling and mode switching analysis of EHA used in the primary flight control actuation systems of large aircraft,addressing the challenges associated with mode switching.First,we analyze the functional architecture and operational characteristics of multi-mode EHA,and sumarize the operating modes and implementation methods.Based on the EHA system architecture,we then develop a theoretical mathematical model and a simulation model.Using the simulation model,we analyze the performance of the EHA during normal operation.Finally,the performance of the EHA during mode switching under various functional switching scenarios is investigated.The results indicate that the EHA meets the performance requirements in terms of accuracy,bandwidth,and load capacity.Additionally,the hydraulic cylinder operates smoothly during the EHA mode switching,and the response time for switching between different modes is less than the specified threshold.These findings validate the system performance of multi-mode EHA,which helps to improve the reliability of EHA and the safety of aircraft flight control systems.
基金Project supported by the National Natural Science Foundation of China (Grant No.12274108)the Natural Science Foundation of Zhejiang Province,China (Grant Nos.LY23A040008 and LY23A040008)the Basic Scientific Research Project of Wenzhou,China (Grant No.G20220025)。
文摘Field-free spin-orbit torque(SOT)switching of perpendicular magnetization is essential for future spintronic devices.This study demonstrates the field-free switching of perpendicular magnetization in an HfO_(2)/Pt/Co/TaO_(x) structure,which is facilitated by a wedge-shaped HfO_(2)buffer layer.The field-free switching ratio varies with HfO_(2)thickness,reaching optimal performance at 25 nm.This phenomenon is attributed to the lateral anisotropy gradient of the Co layer,which is induced by the wedge-shaped HfO_(2)buffer layer.The thickness gradient of HfO_(2)along the wedge creates a corresponding lateral anisotropy gradient in the Co layer,correlating with the switching ratio.These findings indicate that field-free SOT switching can be achieved through designing buffer layer,offering a novel approach to innovating spin-orbit device.
基金the Natural Science Foundation of Fujian,China(No.2021J01633).
文摘To address the low accuracy and stability when applying classical control theory in distribution networks with distributed generation,a control method involving flexible multistate switches(FMSs)is proposed in this study.This approach is based on an improved double-loop recursive fuzzy neural network(DRFNN)sliding mode,which is intended to stably achieve multiterminal power interaction and adaptive arc suppression for single-phase ground faults.First,an improved DRFNN sliding mode control(SMC)method is proposed to overcome the chattering and transient overshoot inherent in the classical SMC and reduce the reliance on a precise mathematical model of the control system.To improve the robustness of the system,an adaptive parameter-adjustment strategy for the DRFNN is designed,where its dynamic mapping capabilities are leveraged to improve the transient compensation control.Additionally,a quasi-continuous second-order sliding mode controller with a calculus-driven sliding mode surface is developed to improve the current monitoring accuracy and enhance the system stability.The stability of the proposed method and the convergence of the network parameters are verified using the Lyapunov theorem.A simulation model of the three-port FMS with its control system is constructed in MATLAB/Simulink.The simulation result confirms the feasibility and effectiveness of the proposed control strategy based on a comparative analysis.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(Grant No.LR20A050001)the National Natural Science Foundation of China(Grant Nos.12261131495 and 12275240)the Scientific Research and De-veloped Fund of Zhejiang A&F University(Grant No.2021FR0009).
文摘We report a passive mode-locked fiber laser that can realize single-wavelength tuning and multi-wavelength spacing tuning simultaneously.The tuning range is from 1528 nm–1560 nm,and up to three bands of soliton states can be output at the same time.These results are confirmed by a nonlinear Schrodinger equation model based on the split-step Fourier method.In addition,we reveal a way to transform the multi-wavelength soliton state into the Q-switched mode-locked state,which is period doubling.These results will promote the development of optical communication,optical sensing and multi-signal pulse emission.
基金Nanjing University of Posts and Telecommunications Foundation(Grant Nos.JUH219002 and JUH219007)Key Laboratory of Functional Crystals and Laser Technology,TIPC,CAS Foundation(Grant No.FCLT 202201)。
文摘We report a high-average-power acousto-optic(AO)Q-switched intracavity frequency-doubled red laser based on a high-efficiency light-emitting-diode(LED)pumped two-rod Nd,Ce:YAG laser module.Under quasi-continuous wave operation conditions,a maximum output power of 1319.08 nm wavelength was achieved at 11.26 W at a repetition rate of 100 Hz.
基金M.Zhu acknowledges support by the National Outstanding Youth Program(62322411)the Hundred Talents Program(Chinese Academy of Sciences)+1 种基金the Shanghai Rising-Star Program(21QA1410800)The financial support was provided by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB44010200).
文摘Today’s explosion of data urgently requires memory technologies capable of storing large volumes of data in shorter time frames,a feat unattain-able with Flash or DRAM.Intel Optane,commonly referred to as three-dimensional phase change memory,stands out as one of the most promising candidates.The Optane with cross-point architecture is constructed through layering a storage element and a selector known as the ovonic threshold switch(OTS).The OTS device,which employs chalcogenide film,has thereby gathered increased attention in recent years.In this paper,we begin by providing a brief introduction to the discovery process of the OTS phenomenon.Subsequently,we summarize the key elec-trical parameters of OTS devices and delve into recent explorations of OTS materials,which are categorized as Se-based,Te-based,and S-based material systems.Furthermore,we discuss various models for the OTS switching mechanism,including field-induced nucleation model,as well as several carrier injection models.Additionally,we review the progress and innovations in OTS mechanism research.Finally,we highlight the successful application of OTS devices in three-dimensional high-density memory and offer insights into their promising performance and extensive prospects in emerging applications,such as self-selecting memory and neuromorphic computing.
文摘Nanostructured BN and BN-Co films with Cu,Co,Au as the top electrodes,and Pt as the bottom electrodes were grown by magnetron sputtering.Both BN samples and BN-Co ones show bipolar resistive switching behaviors.For the sample with active Cu as the top electrode,the formation and rupture of metallic Cu conductive filaments can explain the resistive switching behavior;for the other samples,the generation and annihilation of nitrogen vacancies under the electric stimuli may contribute to the occurrence of resistive switching.Taking advantage of the formed and broken Co-N bonds during resistive switching,the saturation magnetization of the BN-Co films can be modulated.Thus,it investigated the resistive switching behavior of BN and BN-Co materials in this work.Similar to that of oxide materials,the resistive switching behaviors of the nitrides may be attributed to the movement of cations or anions within the dielectric or electrodes during the application of voltage.Additionally,ion migration may lead to the formation or breaking of Co-N bonds,which can effectively regulate the magnetism of BN-Co materials.This study extends resistive switching materials to nitrides,enabling the regulation of magnetism along with resistance changes,thus providing insights for the design of novel voltage-controlled magnetic devices and achieving multi-functionality.
基金supported by the National Natural Science Foundation of China(Grant No.12174051).
文摘Dirac electrons possess a valley degree of freedom,which is currently under investigation as a potential information carrier.We propose an approach to generate and manipulate the valley-switching current(VSC)through Andreev reflection using an interferometer-based superconductor hybrid junction.The interferometer comprises a ring-shaped structure formed by topological kink states in the a-T_(3) lattice via carefully designed electrostatic potentials.Our results demonstrate the feasibility of achieving a fully polarized VSC in this device without contamination from cotunneling electrons sharing the same valley as the incident electron.Furthermore,we show that control over the fully polarized VSC can be achieved by applying a nonlocal gate voltage or modifying the global parameter a.The former alters the dynamic phase of electrons while the latter provides an a-dependent Berry phase,both directly influencing quantum interference and thereby affecting performance in terms of generating and manipulating VSC,crucial for advancements in valleytronics.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金This research was supported by the European Union’s‘Shift2Rail’through No.826255 for the project IN2TRACK2:Research into enhanced track and switch and crossing system 2
文摘The main contribution of this paper is the development and demonstration of a novel methodology that can be followed to develop a simulation twin of a railway track switch system to test the functionality in a digital environment.This is important because,globally,railway track switches are used to allow trains to change routes;they are a key part of all railway networks.However,because track switches are single points of failure and safety-critical,their inability to operate correctly can cause significant delays and concomitant costs.In order to better understand the dynamic behaviour of switches during operation,this paper has developed a full simulation twin of a complete track switch system.The approach fuses finite element for the rail bending and motion,with physics-based models of the electromechanical actuator system and the control system.Hence,it provides researchers and engineers the opportunity to explore and understand the design space around the dynamic operation of new switches and switch machines before they are built.This is useful for looking at the modification or monitoring of existing switches,and it becomes even more important when new switch concepts are being considered and evaluated.The simulation is capable of running in real time or faster meaning designs can be iterated and checked interactively.The paper describes the modelling approach,demonstrates the methodology by developing the system model for a novel“REPOINT”switch system,and evaluates the system level performance against the dynamic performance requirements for the switch.In the context of that case study,it is found that the proposed new actuation system as designed can meet(and exceed)the system performance requirements,and that the fault tolerance built into the actuation ensures continued operation after a single actuator failure.
基金This work was supported by ZTE Industry⁃University⁃Institute Coopera⁃tion Funds under Grant No.IA20230614004.
文摘Wavelength selective switch(WSS)is the crucial component in the reconfigurable optical add/drop multiplexer(ROADM),which plays a pivotal role in the next-generation all-optical networks.We present a compact architecture of twin 1×40 liquid crystal on silicon(LCoS)-based WSS,which can be regarded as a 4f system in the wavelength direction and a 2f system in the switching direction.It is designed with theoretical analysis and simulation investigation.Polarization multiplexing is employed for two sources of twin WSS by polarization con-version before the common optical path.The WSS system attains a coupling efficacy exceeding 96%for 90%of the ports through simulation optimization.The 3 dB bandwidth can be achieved by more than 44 GHz at a 50 GHz grid for all 120 channels at all deflection ports.This work establishes a solid foundation for developing high-performance WSS with larger port counts.
基金supported by the Scientific Research Project of Tianjin Municipal Educational Commission(No.2021KJ058)。
文摘In order to study the influence of stochastic disturbance and environment switching on the HPV infection and provide a theoretical basis for the development of effective HPV disease prevention measures,in this paper we establish a kind of two-sex stochastic HPV epidemic model with white noise and Markov switching.We show that the model has a unique local positive solution and a unique global positive solution.Then we identify the threshold conditions for the persistence of the HPV epidemic,and verify the persistence of the disease using the Lyapunov method and the Ito^formula.At last,the numerical simulation is carried out to illustrate the rationality of the theoretical results.