The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction...The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.展开更多
The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the inf...The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the influence of both the number of pre-cracks and pre-cracks angles to crack growth was analyzed. Meanwhile, species of rock bridge failure were summarized, namely, wing crack, secondary shear crack between horizontal pre-cracks and secondary shear crack between vertical pre-cracks. The wing crack plays a significant role in crack growth. Furthermore, fractal dimension was adopted to describe quantitatively the crack growth during the failure process. The results indicate that with the failure of specimens, corresponding fractal dimension for specimen monotonically increases, which indicates that the fractal dimension can be considered to the failure of the specimens quantitatively.展开更多
By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far ...By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.展开更多
Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the ...Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.展开更多
Background:The worldwide pest Aphis gossypii has three-winged morphs in its life cycle,namely,winged parthenogenetic female(WPF),winged gynopara(GP),and winged male,which are all produced by a wingless parthenogenetic...Background:The worldwide pest Aphis gossypii has three-winged morphs in its life cycle,namely,winged parthenogenetic female(WPF),winged gynopara(GP),and winged male,which are all produced by a wingless parthenogenetic female(WLPF).Most studies on A.gossypii have focused on WPF,while few have investigated GP and male.The shared molecular mechanism underlying the wing differentiation in the three wing morphs of A.gossypii remains unknown.The wing differentiation of WPF was explored in a previous study.Herein,GP and male were induced indoors.The characters of the body,internal genitals,wing veins,and fecundity of GP and male were compared with those of WPF or WLPF.Compared with WLPF,the shared and separate differentially expressed genes(DEGs)were identified in these three-wing morphs.Results:Newly-born nymphs reared in short photoperiod condition(8 L:16D,18°C)exclusively produced gynoparae(GPe)and males in adulthood successively,in which the sex ratio was GP biased.A total of 14 GPe and 9 males were produced by one mother aphid.Compared with WLPF,the three-wing morphs exhibited similar morphology and wing vein patterns but were obviously discriminated in the length of fore-and underwings,reproductive system,and fecundity.A total of 37090 annotated unigenes were obtained from libraries constructed using the four morphs via RNA sequencing(RNA-Seq).In addition,10867 and 19334 DEGs were identified in the pairwise comparison of GP versus WLPF and male versus WLPF,respectively.Compared with WLPF,the winged morphs demonstrated 2335 shared DEGs(1658 upregulated and 677 downregulated).The 1658 shared upregulated DEGs were enriched in multiple signaling pathways,including insulin,FoxO,MAPK,starch and sucrose metabolism,fatty acid biosynthesis,and degradation,suggesting their key roles in the regulation of wing plasticity in the cotton aphid.Forty-four genes that spanned the range of differential expression were chosen to validate statistical analysis based on RNA-Seq through the reverse transcription quantitative real time polymerase chain reaction(RT-qPCR).The comparison concurred with the expression pattern(either up-or downregulated)and supported the accuracy and reliability of RNA-Seq.Finally,the potential roles of DEGs related to the insulin signaling pathway in wing dimorphism were discussed in the cotton aphid.Conclusions:The present study established an efficiently standardized protocol for GP and male induction in cotton aphid by transferring newly-born nymphs to short photoperiod conditions(8 L:16D,18°C).The external morphological characters,especially wing vein patterns,were similar among WPFs,GPe,and males.However,their reproductive organs were strikingly different.Compared with WLPF,shared(2335)and exclusively(1470 in WLPF,2419 in GP,10774 male)expressed genes were identified in the three-wing morphs through RNA-Seq,and several signaling pathways that are potentially involved in their wing differentiation were obtained,including insulin signaling,starch and sucrose metabolism.展开更多
Background:Aphis gossypii is a worldwide sap-sucking pest with a variety of hosts and a vector of more than 50 plant viruses.The strategy of wing polyphenism,mostly resulting from population density increasing,contrib...Background:Aphis gossypii is a worldwide sap-sucking pest with a variety of hosts and a vector of more than 50 plant viruses.The strategy of wing polyphenism,mostly resulting from population density increasing,contributes to the evolutionary success of this pest.However,the related molecular basis remains unclear.Here,we identified the effects of postnatal crowding on wing morph determination in cotton aphid,and examined the transcriptomic differences between wingless and wing morphs.Results:Effect of postnatal crowding on wing determination in A gossypii was evaluated firstly.Under the density of 5 nymphs·cm-2,no wing aphids appeared.Proportion of wing morphs rised with the increase of density in a certain extent,and peaked to 56.1% at the density of 20 nymphs·cm-2,and reduced afterwards.Then,transcriptomes of wingless and wing morphs were assembled and annotated separately to identify potentially exclusively or differentially expressed transcripts between these two morphs,in which 3 126 and 3 392 unigenes annotated in Nr(Non-redundant protein sequence) database were found in wingless or wing morphs exclusively.Moreover,3 187 up-and 1 880 down-regulated genes were identified in wing versus wingless aphid.Pathways analysis suggested the involvement of differentially expressed genes in multiple cellular signaling pathways involved in wing morphs determination,including lipid catabolic and metabolism,insulin,ecdysone and juvenile hormone biosynthesis.The expression levels of related genes were validated by the reverse transcription quantitative real time polymerase chain reaction(RT-qPCR) soon afterwards.Conclusions:The present study identified the effects of postnatal crowding on wing morphs induction and demonstrated that the critical population density for wing morphs formation in A gossypii was 20 nymphs·cm-2.Comparative transcriptome analysis provides transcripts potentially expressed exclusively in wingless or wing morph,respectively.Differentially expressed genes between wingless and wing morphs were identified and several signaling pathways potentially involved in cotton aphid wing differentiation were obtained.展开更多
Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of...Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of inflatable wings such as flutter are nonnegligible in flight.By designing a certain angle between the inflatable beam and the wing span,the structural dynamic and even the aeroelastic performance of the inflatable wing can be effectively improved.Based on the analysis of the mechanical and geometric characteristics of the inflatable structure,a new inflatable wing with sweep arranged inflatable beams is proposed,and the main design variables and methods are analyzed.For purpose of investigating the aeroelastic performance of the swept baffled inflatable wing,the modal behaviors by considering the wet mode are studied.In consideration of the deficiencies of the traditional wet modal analysis method,by introducing the influence on the additional stiffness of flow field,an added massstiffness method is proposed in this paper,and the advantages are verified by ground vibration experiments.On this basis,the effects of baffles sweep angle,pressure,and boundary conditions on the modal parameters and aeroelastic performance of inflatable wing are analyzed.The results show that the aeroelastic performance of the inflatable wing can be designed by changing the baffles sweep angle,which is enlightened for the aeroelastic tailoring design on inflatable wings.展开更多
In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur...In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.展开更多
Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numer...Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numerical method is developed to calculate the longitudinal and longitudinal-lateral coupling forces and moments with small amplitude sinusoidal pitch oscillation, and the corresponding dynamic derivatives of two fragment-structure-damaged and two continuous-rod-damaged models modified from the SACCON UAV. The results indicate that, at the reference point set in this paper, additional positive damping is generated in fragment-damaged configurations;thus, the absolute values of the negative pitch dynamic derivative increase. The missing wingtip induces negative pitch damping on the aircraft and decreases the value of the pitch dynamic derivative. The missing middle wing causes a noticeable increase in the absolute value of the pitch dynamic derivative;the missing parts on the right wing cause the aircraft to roll to the right side in the dynamic process, and the pitch-roll coupling cross dynamic derivatives are positive. Moreover, the values of these derivatives increase as the damaged area on the right wing increases, and an optimal case with the smallest cross dynamic derivative can be found to help improve the survivability of damaged aircraft.展开更多
A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the p...A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.展开更多
Peen forming is the most important process for the manufacturing of integral wing skin panels. In order to determine peening parameters, an equivalent deformation theory was proposed in which peening parameters are tr...Peen forming is the most important process for the manufacturing of integral wing skin panels. In order to determine peening parameters, an equivalent deformation theory was proposed in which peening parameters are transformed into equivalent nodal forces. In this study, a linear elastic shell finite element method is adopted. Other related problems such as wing skin panel modeling and peening scheme analysis were also outlined. The method has been applied to manufacturing panels of a certain Chinese aircraft and was proved to be effective in reducing peening experimental tests and improving products quality.展开更多
基金supported by the Istanbul Technical University Office of Scientific Research Projects(ITUBAPSIS),under grant MYL-2022-43776。
文摘The design of unmanned aerial vehicles(UAVs)revolves around the careful selection of materials that are both lightweight and robust.Carbon fiber-reinforced polymer(CFRP)emerged as an ideal option for wing construction,with its mechanical qualities thoroughly investigated.In this study,we developed and optimized a conceptual UAV wing to withstand structural loads by establishing progressive composite stacking sequences,and we conducted a series of experimental characterizations on the resulting material.In the optimization phase,the objective was defined as weight reduction,while the Hashin damage criterion was established as the constraint for the optimization process.The optimization algorithm adaptively monitors regional damage criterion values,implementing necessary adjustments to facilitate the mitigation process in a cost-effective manner.Optimization of the analytical model using Simulia Abaqus~(TM)and a Python-based user-defined sub-routine resulted in a 34.7%reduction in the wing's structural weight after 45 iterative rounds.Then,the custom-developed optimization algorithm was compared with a genetic algorithm optimization.This comparison has demonstrated that,although the genetic algorithm explores numerous possibilities through hybridization,the custom-developed algorithm is more result-oriented and achieves optimization in a reduced number of steps.To validate the structural analysis,test specimens were fabricated from the wing's most critically loaded segment,utilizing the identical stacking sequence employed in the optimization studies.Rigorous mechanical testing revealed unexpectedly high compressive strength,while tensile and bending strengths fell within expected ranges.All observed failure loads remained within the established safety margins,thereby confirming the reliability of the analytical predictions.
基金Project(E21527)supported by the Open Research Fund Program of Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,ChinaProject(2015zzts077)supported by the Fundamental Research Funds for the Central Universities,China+1 种基金Projects(51174088,51174228)supported by the National Natural Science Foundation of ChinaProject(2013CB035401)supported by the National Basic Research Program of China
文摘The pre-burying iron sheets approach was used to prepare rock-like materials with ordered multiple pre-cracks. 60 specimens in total were prepared in these experiments. Through biaxial compression experiments, the influence of both the number of pre-cracks and pre-cracks angles to crack growth was analyzed. Meanwhile, species of rock bridge failure were summarized, namely, wing crack, secondary shear crack between horizontal pre-cracks and secondary shear crack between vertical pre-cracks. The wing crack plays a significant role in crack growth. Furthermore, fractal dimension was adopted to describe quantitatively the crack growth during the failure process. The results indicate that with the failure of specimens, corresponding fractal dimension for specimen monotonically increases, which indicates that the fractal dimension can be considered to the failure of the specimens quantitatively.
基金Projects(10972238,51074071,50974059)supported by the National Natural Science Foundation of ChinaProject(10JJ3007)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(11C0539)supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(200905)supported by Open Research Fund of Hunan Provincial Key of Safe Mining Techniques of Coal Mines,China
文摘By considering the effect of hydraulic pressure filled in wing crack and the connected part of main crack on the stress intensity factor at wing crack tip, a new wing crack model exerted by hydraulic pressure and far field stresses was proposed. By introducing the equivalent crack length lcq of wing crack, two terms make up the stress intensity factor K1 at wing crack tip: one is the component K(1) for a single isolated straight wing crack of length 2l subjected to hydraulic pressure in wing crack and far field stresses, and the other is the component K1^(2) due to the effective shear stress induced by the presence of the equivalent main crack. The FEM model of wing crack propagation subjected to hydraulic pressure and far field stresses was also established according to different side pressure coefficients and hydraulic pressures in crack. The result shows that a good agreement is found between theoretical model of wing crack proposed and finite element method (FEM). In theory, an unstable crack propagation is shown if there is high hydraulic pressure and lateral tension. The wing crack model proposed can provide references for studying on hydraulic fracturing in rock masses.
基金supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2020JQ-122)the Fund support of Science and Technology on Transient Impact Laboratory。
文摘Damage assessment of the wing under blast wave is essential to the vulnerability reduction design of aircraft. This paper introduces a critical relative distance prediction method of aircraft wing damage based on the back-propagation artificial neural network(BP-ANN), which is trained by finite element simulation results. Moreover, the finite element method(FEM) for wing blast damage simulation has been validated by ground explosion tests and further used for damage mode determination and damage characteristics analysis. The analysis results indicate that the wing is more likely to be damaged when the root is struck from vertical directions than others for a small charge. With the increase of TNT equivalent charge, the main damage mode of the wing gradually changes from the local skin tearing to overall structural deformation and the overpressure threshold of wing damage decreases rapidly. Compared to the FEM-based damage assessment, the BP-ANN-based method can predict the wing damage under a random blast wave with an average relative error of 4.78%. The proposed method and conclusions can be used as a reference for damage assessment under blast wave and low-vulnerability design of aircraft structures.
基金Central Public-interest Scientific Institution Basal Research Fund(No.1610162019020604).
文摘Background:The worldwide pest Aphis gossypii has three-winged morphs in its life cycle,namely,winged parthenogenetic female(WPF),winged gynopara(GP),and winged male,which are all produced by a wingless parthenogenetic female(WLPF).Most studies on A.gossypii have focused on WPF,while few have investigated GP and male.The shared molecular mechanism underlying the wing differentiation in the three wing morphs of A.gossypii remains unknown.The wing differentiation of WPF was explored in a previous study.Herein,GP and male were induced indoors.The characters of the body,internal genitals,wing veins,and fecundity of GP and male were compared with those of WPF or WLPF.Compared with WLPF,the shared and separate differentially expressed genes(DEGs)were identified in these three-wing morphs.Results:Newly-born nymphs reared in short photoperiod condition(8 L:16D,18°C)exclusively produced gynoparae(GPe)and males in adulthood successively,in which the sex ratio was GP biased.A total of 14 GPe and 9 males were produced by one mother aphid.Compared with WLPF,the three-wing morphs exhibited similar morphology and wing vein patterns but were obviously discriminated in the length of fore-and underwings,reproductive system,and fecundity.A total of 37090 annotated unigenes were obtained from libraries constructed using the four morphs via RNA sequencing(RNA-Seq).In addition,10867 and 19334 DEGs were identified in the pairwise comparison of GP versus WLPF and male versus WLPF,respectively.Compared with WLPF,the winged morphs demonstrated 2335 shared DEGs(1658 upregulated and 677 downregulated).The 1658 shared upregulated DEGs were enriched in multiple signaling pathways,including insulin,FoxO,MAPK,starch and sucrose metabolism,fatty acid biosynthesis,and degradation,suggesting their key roles in the regulation of wing plasticity in the cotton aphid.Forty-four genes that spanned the range of differential expression were chosen to validate statistical analysis based on RNA-Seq through the reverse transcription quantitative real time polymerase chain reaction(RT-qPCR).The comparison concurred with the expression pattern(either up-or downregulated)and supported the accuracy and reliability of RNA-Seq.Finally,the potential roles of DEGs related to the insulin signaling pathway in wing dimorphism were discussed in the cotton aphid.Conclusions:The present study established an efficiently standardized protocol for GP and male induction in cotton aphid by transferring newly-born nymphs to short photoperiod conditions(8 L:16D,18°C).The external morphological characters,especially wing vein patterns,were similar among WPFs,GPe,and males.However,their reproductive organs were strikingly different.Compared with WLPF,shared(2335)and exclusively(1470 in WLPF,2419 in GP,10774 male)expressed genes were identified in the three-wing morphs through RNA-Seq,and several signaling pathways that are potentially involved in their wing differentiation were obtained,including insulin signaling,starch and sucrose metabolism.
基金funded by National Natural Science Foundation of China(No.31572015)
文摘Background:Aphis gossypii is a worldwide sap-sucking pest with a variety of hosts and a vector of more than 50 plant viruses.The strategy of wing polyphenism,mostly resulting from population density increasing,contributes to the evolutionary success of this pest.However,the related molecular basis remains unclear.Here,we identified the effects of postnatal crowding on wing morph determination in cotton aphid,and examined the transcriptomic differences between wingless and wing morphs.Results:Effect of postnatal crowding on wing determination in A gossypii was evaluated firstly.Under the density of 5 nymphs·cm-2,no wing aphids appeared.Proportion of wing morphs rised with the increase of density in a certain extent,and peaked to 56.1% at the density of 20 nymphs·cm-2,and reduced afterwards.Then,transcriptomes of wingless and wing morphs were assembled and annotated separately to identify potentially exclusively or differentially expressed transcripts between these two morphs,in which 3 126 and 3 392 unigenes annotated in Nr(Non-redundant protein sequence) database were found in wingless or wing morphs exclusively.Moreover,3 187 up-and 1 880 down-regulated genes were identified in wing versus wingless aphid.Pathways analysis suggested the involvement of differentially expressed genes in multiple cellular signaling pathways involved in wing morphs determination,including lipid catabolic and metabolism,insulin,ecdysone and juvenile hormone biosynthesis.The expression levels of related genes were validated by the reverse transcription quantitative real time polymerase chain reaction(RT-qPCR) soon afterwards.Conclusions:The present study identified the effects of postnatal crowding on wing morphs induction and demonstrated that the critical population density for wing morphs formation in A gossypii was 20 nymphs·cm-2.Comparative transcriptome analysis provides transcripts potentially expressed exclusively in wingless or wing morph,respectively.Differentially expressed genes between wingless and wing morphs were identified and several signaling pathways potentially involved in cotton aphid wing differentiation were obtained.
基金supported by National Natural Science Foundation of China(Grant No.11902029)。
文摘Inflatable wing has significant application value in the design of loitering munitions because of its advantages such as lightweight and foldability.However,due to the flexible characteristics,aeroelastic behaviors of inflatable wings such as flutter are nonnegligible in flight.By designing a certain angle between the inflatable beam and the wing span,the structural dynamic and even the aeroelastic performance of the inflatable wing can be effectively improved.Based on the analysis of the mechanical and geometric characteristics of the inflatable structure,a new inflatable wing with sweep arranged inflatable beams is proposed,and the main design variables and methods are analyzed.For purpose of investigating the aeroelastic performance of the swept baffled inflatable wing,the modal behaviors by considering the wet mode are studied.In consideration of the deficiencies of the traditional wet modal analysis method,by introducing the influence on the additional stiffness of flow field,an added massstiffness method is proposed in this paper,and the advantages are verified by ground vibration experiments.On this basis,the effects of baffles sweep angle,pressure,and boundary conditions on the modal parameters and aeroelastic performance of inflatable wing are analyzed.The results show that the aeroelastic performance of the inflatable wing can be designed by changing the baffles sweep angle,which is enlightened for the aeroelastic tailoring design on inflatable wings.
文摘In the present research,by using a numerical model,some analyses were performed on flows around a T-shape spur dike and a support structure located at its upstream under different wing to length ratios of T-shape spur dike in the order of 0.25,0.50,0.75 and 1.00.In order to verify numerical model,physical model data were used in presence of a single T shape spur dike.Results from numerical model are desirably in agreement with those of physical one because the regression between both data is 0.86 up to 0.92.In this research,all hydraulic parameters of flows,streamlines and dimensions of flow separation zones were studied in order to select the most practical model.Increased W/L results in 7%–12%increase in the length of flow separation zone and in 2%increase in the width of this zone compared to W/L=0.25.
基金support of National Natural Science Foundation of China (Grant No. 11672236)Project funded by China Postdoctoral Science Foundation (Grant No. 2018M641381)。
文摘Accurately evaluating the aerodynamic performance of a battle-structure-damaged aircraft is essential to enable the pilot to optimize the flight control strategy. Based on CFD and rigid dynamic mesh techniques,a numerical method is developed to calculate the longitudinal and longitudinal-lateral coupling forces and moments with small amplitude sinusoidal pitch oscillation, and the corresponding dynamic derivatives of two fragment-structure-damaged and two continuous-rod-damaged models modified from the SACCON UAV. The results indicate that, at the reference point set in this paper, additional positive damping is generated in fragment-damaged configurations;thus, the absolute values of the negative pitch dynamic derivative increase. The missing wingtip induces negative pitch damping on the aircraft and decreases the value of the pitch dynamic derivative. The missing middle wing causes a noticeable increase in the absolute value of the pitch dynamic derivative;the missing parts on the right wing cause the aircraft to roll to the right side in the dynamic process, and the pitch-roll coupling cross dynamic derivatives are positive. Moreover, the values of these derivatives increase as the damaged area on the right wing increases, and an optimal case with the smallest cross dynamic derivative can be found to help improve the survivability of damaged aircraft.
文摘A blank panel design algorithm based on feature mapping methods for integral wing skin panels with supercritical airfoil surface is presented.The model of a wing panel is decomposed into features,and features of the panel are decomposed into information of location,direction,dimension and Boolean types.Features are mapped into the plane through optimal surface development algorithm.The plane panel is modeled by rebuilding the mapped features.Blanks of shot-peen forming panels are designed to identify the effectiveness of the methods.
文摘Peen forming is the most important process for the manufacturing of integral wing skin panels. In order to determine peening parameters, an equivalent deformation theory was proposed in which peening parameters are transformed into equivalent nodal forces. In this study, a linear elastic shell finite element method is adopted. Other related problems such as wing skin panel modeling and peening scheme analysis were also outlined. The method has been applied to manufacturing panels of a certain Chinese aircraft and was proved to be effective in reducing peening experimental tests and improving products quality.