人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信...人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信息进行处理后,利用CSI幅度方差确定动作起止区间,从中提取CSI的特征向量,并用线性判别式分析算法(Linear Discriminant Analysis,LDA)分类器实现人体日常生活中“蹲下”、“站起”、“坐下”、“捡起”和“走”5种动作的识别,实验结果表明平均识别率可达到96%。展开更多
随着人们对人数统计需求的不断增长,基于信道状态信息(channel state information,CSI)的人流量监测技术因其易于部署、保护隐私和适用性强等优势而备受关注.然而,在现有的人流量监测工作中,人数识别的准确率容易受到人群密集程度的影响...随着人们对人数统计需求的不断增长,基于信道状态信息(channel state information,CSI)的人流量监测技术因其易于部署、保护隐私和适用性强等优势而备受关注.然而,在现有的人流量监测工作中,人数识别的准确率容易受到人群密集程度的影响.为了保证监测精度,通常只能在人群稀疏的情况下进行监测,这导致了基于CSI的人流量监测技术缺乏实用性.为了解决这一问题,提出了一种能够识别连续性人流的监测方法.该方法首先利用解卷绕和线性相位校正算法,对原始数据进行相位补偿并消除随机相位偏移;然后通过标准差和方差提取连续性人流数据中的有效数据包;最后将时域上的相位差信息作为特征信号输入到深度学习的CLDNN(convolutional,long short-term memory,deep neural network)中进行人数识别.经过实验测试,该方法在前后排行人距离不小于1 m的情况下,分别实现了室外96.7%和室内94.1%的准确率,优于现有的人流量监测方法.展开更多
针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习...针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习的朴素贝叶斯算法进行位置分类。为进一步提高分类准确度,本文还提出了置信度方法,通过综合多条天线对的结果来减少位置误判。实验结果表明,本文所提出方法能有效实现对室内人员的无源定位,可以达到90%以上的准确度。展开更多
文摘人体动作识别是以人为中心的物联网的核心技术之一。为了实现无需穿戴设备、低成本的动作识别系统,提出了一种基于WiFi信道状态信息(Channel State Information,CSI)的人体动作识别方法。该方法采用Hampel滤波结合离散小波去噪对CSI信息进行处理后,利用CSI幅度方差确定动作起止区间,从中提取CSI的特征向量,并用线性判别式分析算法(Linear Discriminant Analysis,LDA)分类器实现人体日常生活中“蹲下”、“站起”、“坐下”、“捡起”和“走”5种动作的识别,实验结果表明平均识别率可达到96%。
文摘针对传统室内定位方法在准确性及稳定性上的不足,本文提出了一种基于信道状态信息(channel state information,CSI)的无源室内定位方法。该方法采用普通设备搭建了实验平台,离线阶段采集CSI数据建立位置指纹库,在线阶段则利用机器学习的朴素贝叶斯算法进行位置分类。为进一步提高分类准确度,本文还提出了置信度方法,通过综合多条天线对的结果来减少位置误判。实验结果表明,本文所提出方法能有效实现对室内人员的无源定位,可以达到90%以上的准确度。