In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequen...In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.展开更多
The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic fu...The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.展开更多
The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the...The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.展开更多
In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergen...In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.展开更多
In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distri...In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.展开更多
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the...There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.展开更多
To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to ...To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).展开更多
Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not ...Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.展开更多
In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and ...In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.展开更多
This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is ...This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is destroyed by diverse time-delays which include communication time-delay and self time-delay. Based on the generalized Nyquist stability criterion and the Gerschgorin disk theorem, some sufficient conditions for the consensus of multi-agent systems are obtained. And we give the expression of the weighted average consensus value for our consensus protocol. Finally, numerical examples are presented to illustrate the theoretical results.展开更多
Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and th...Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.展开更多
The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational law...The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.展开更多
The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS...The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.展开更多
Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment n...Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.展开更多
Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matri...Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.展开更多
A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position erro...A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.展开更多
A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard...A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.展开更多
As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when ...As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm.展开更多
基金Supported by the National Natural Science Foundation of China(12301101)the Guangdong Basic and Applied Basic Research Foundation(2022A1515110019 and 2020A1515110585)。
文摘In this paper,the Paley-Wiener theorem is extended to the analytic function spaces with general weights.We first generalize the theorem to weighted Hardy spaces Hp(0<p<∞)on tube domains by constructing a sequence of L^(1)functions converging to the given function and verifying their representation in the form of Fourier transform to establish the desired result of the given function.Applying this main result,we further generalize the Paley-Wiener theorem for band-limited functions to the analytic function spaces L^(p)(0<p<∞)with general weights.
基金Supported by Natural Science Foundation of Guangdong Province in China(2018KTSCX161)。
文摘The boundness and compactness of products of multiplication,composition and differentiation on weighted Bergman spaces in the unit ball are studied.We define the differentiation operator on the space of holomorphic functions in the unit ball by radial derivative.Then we extend the Sharma's results.
基金supported by Doctoral Scientific Research Starting Foundation of Jingdezhen Ceramic University(Grant No.102/01003002031)Re-accompanying Funding Project of Academic Achievements of Jingdezhen Ceramic University(Grant Nos.215/20506277,215/20506341)。
文摘The complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space is studied.By moment inequality and truncation methods,we establish the equivalent conditions of complete convergence for weighted sums of sequences of independent,identically distributed random variables under sublinear expectation space.The results complement the corresponding results in probability space to those for sequences of independent,identically distributed random variables under sublinear expectation space.
基金supported by the National Social Science Fundation(Grant No.21BTJ040)the Project of Outstanding Young People in University of Anhui Province(Grant Nos.2023AH020037,SLXY2024A001).
文摘In this paper,by utilizing the Marcinkiewicz-Zygmund inequality and Rosenthal-type inequality of negatively superadditive dependent(NSD)random arrays and truncated method,we investigate the complete f-moment convergence of NSD random variables.We establish and improve a general result on the complete f-moment convergence for Sung’s type randomly weighted sums of NSD random variables under some general assumptions.As an application,we show the complete consistency for the randomly weighted estimator in a nonparametric regression model based on NSD errors.
基金National Natural Science Foundation of China (Grant Nos.12061028, 71871046)Support Program of the Guangxi China Science Foundation (Grant No.2018GXNSFAA281011)。
文摘In this paper,we investigate the complete convergence and complete moment conver-gence for weighted sums of arrays of rowwise asymptotically negatively associated(ANA)random variables,without assuming identical distribution.The obtained results not only extend those of An and Yuan[1]and Shen et al.[2]to the case of ANA random variables,but also partially improve them.
基金Project(61374140)supported by the National Natural Science Foundation of China
文摘There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because their presumptions are that sampled-data should obey the single Gaussian distribution or non-Gaussian distribution. In order to solve these problems, a novel weighted local standardization(WLS) strategy is proposed to standardize the multimodal data, which can eliminate the multi-mode characteristics of the collected data, and normalize them into unimodal data distribution. After detailed analysis of the raised data preprocessing strategy, a new algorithm using WLS strategy with support vector data description(SVDD) is put forward to apply for multi-mode monitoring process. Unlike the strategy of building multiple local models, the developed method only contains a model without the prior knowledge of multi-mode process. To demonstrate the proposed method's validity, it is applied to a numerical example and a Tennessee Eastman(TE) process. Finally, the simulation results show that the WLS strategy is very effective to standardize multimodal data, and the WLS-SVDD monitoring method has great advantages over the traditional SVDD and PCA combined with a local standardization strategy(LNS-PCA) in multi-mode process monitoring.
基金This project was supported by the National Basic Research Programof China (2001CB309403)
文摘To improve the performance of multiple classifier system, a knowledge discovery based dynamic weighted voting (KD-DWV) is proposed based on knowledge discovery. In the method, all base classifiers may be allowed to operate in different measurement/feature spaces to make the most of diverse classification information. The weights assigned to each output of a base classifier are estimated by the separability of training sample sets in relevant feature space. For this purpose, some decision tables (DTs) are established in terms of the diverse feature sets. And then the uncertainty measures of the separability are induced, in the form of mass functions in Dempster-Shafer theory (DST), from each DTs based on generalized rough set model. From the mass functions, all the weights are calculated by a modified heuristic fusion function and assigned dynamically to each classifier varying with its output. The comparison experiment is performed on the hyperspectral remote sensing images. And the experimental results show that the performance of the classification can be improved by using the proposed method compared with the plurality voting (PV).
基金the National Natural Science Foundation of China (60672061)
文摘Blind separation of sparse sources (BSSS) is discussed. The BSSS method based on the conventional K-means clustering is very fast and is also easy to implement. However, the accuracy of this method is generally not satisfactory. The contribution of the vector x(t) with different modules is theoretically proved to be unequal, and a weighted K-means clustering method is proposed on this grounds. The proposed algorithm is not only as fast as the conventional K-means clustering method, but can also achieve considerably accurate results, which is demonstrated by numerical experiments.
基金supported by the National Natural Science Foundation of China(6110420961503126)
文摘In practical applications, the system observation error is widespread. If the observation equation of the system has not been verified or corrected under certain environmental conditions,the unknown system errors and filtering errors will come into being.The incremental observation equation is derived, which can eliminate the unknown observation errors effectively. Furthermore, an incremental Kalman smoother is presented. Moreover, a weighted measurement fusion incremental Kalman smoother applying the globally optimal weighted measurement fusion algorithm is given.The simulation results show their effectiveness and feasibility.
基金supported by the National Natural Science Foundation of China(6127312661363002+3 种基金61374104)the Natural Science Foundation of Guangdong Province(10251064101000008S2012010009675)the Fundamental Research Funds for the Central Universities(2012ZM0059)
文摘This paper studies the weighted average consensus problem for networks of agents with fixed directed asymmetric unbalance information exchange topology. We suppose that the classical distributed consensus protocol is destroyed by diverse time-delays which include communication time-delay and self time-delay. Based on the generalized Nyquist stability criterion and the Gerschgorin disk theorem, some sufficient conditions for the consensus of multi-agent systems are obtained. And we give the expression of the weighted average consensus value for our consensus protocol. Finally, numerical examples are presented to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (70871117 70571086)
文摘Multiattribute decision making(MADM) problems, in which the weights and ratings of alternatives are expressed with intuitionistic fuzzy(IF) sets, are investigated.Firstly, the relative degrees of membership and the relative degrees of non-membership are formulated as IF sets, the weights and values of alternatives on both qualitative and quantitative attributes may be expressed as IF sets in a unified way.Then a MADM method based on generalized ordered weighted averaging operators is proposed.The proposed method is illustrated with a numerical example.
基金supported by the National Natural Science Foundation of China (70771025)the Fundamental Research Funds for the Central Universities of Hohai University (2009B04514)Humanities and Social Sciences Foundations of Ministry of Education of China(10YJA630067)
文摘The multiple attribute decision making problems are studied, in which the information about attribute weights is partly known and the attribute values take the form of intuitionistic fuzzy numbers. The operational laws of intuitionistic fuzzy numbers are introduced, and the score function and accuracy function are presented to compare the intuitionistic fuzzy numbers. The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator which is an extension of the well-known ordered weighted averaging (OWA) operator is investigated to aggregate the intuitionistic fuzzy information. In order to determine the weights of intuitionistic fuzzy ordered weighted averaging operator, a linear goal programming procedure is proposed for learning the weights from data. Finally, an example is illustrated to verify the effectiveness and practicability of the developed method.
基金supported by the National Natural Science Foundation of China (60372081)China Postdoctoral Science Foundation (20070410347)the Doctor Startup Fund of Liaoning Province (20071076)
文摘The traditional HB-weighted time-delay estimation (TDE) method degenerates under the impulsive noise environment. Two new time-delay estimation methods are proposed based on fractional lower order statistics (FLOS) according to the impulsive characteristics of fractional lower order α-stable noises. Theoretic analysis and computer simulations indicate that the proposed covariation based HB weighted (COV-HB) algorithm can suppress impulsive noises in one received signal for 1 ≤α≤ 2, whereas the other proposed fractional lower order eovariancebased HB weighted (FLOC-HB) algorithm has robust performance under arbitrary impulsive noise conditions for the whole range of 0 〈α≤ 2.
基金supported by the National Science Foundation for Outstanding Young Scientists (60425310)the Science Foundation for Post-doctoral Scientists of Central South University (2008)
文摘Event region detection is the important application for wireless sensor networks(WSNs), where the existing faulty sensors would lead to drastic deterioration of network quality of service.Considering single-moment nodes fault-tolerance, a novel distributed fault-tolerant detection algorithm named distributed fault-tolerance based on weighted distance(DFWD) is proposed, which exploits the spatial correlation among sensor nodes and their redundant information.In sensor networks, neighborhood sensor nodes will be endowed with different relative weights respectively according to the distances between them and the central node.Having syncretized the weighted information of dual-neighborhood nodes appropriately, it is reasonable to decide the ultimate status of the central sensor node.Simultaneously, readings of faulty sensors would be corrected during this process.Simulation results demonstrate that the DFWD has a higher fault detection accuracy compared with other algorithms, and when the sensor fault probability is 10%, the DFWD can still correct more than 91% faulty sensor nodes, which significantly improves the performance of the whole sensor network.
基金This work is supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX18_0467)Jiangsu Province,China.During the revision of this paper,the author is supported by China Scholarship Council(No.201906840021)China to continue some research related to data processing.
文摘Kalman filter is commonly used in data filtering and parameters estimation of nonlinear system,such as projectile's trajectory estimation and control.While there is a drawback that the prior error covariance matrix and filter parameters are difficult to be determined,which may result in filtering divergence.As to the problem that the accuracy of state estimation for nonlinear ballistic model strongly depends on its mathematical model,we improve the weighted least squares method(WLSM)with minimum model error principle.Invariant embedding method is adopted to solve the cost function including the model error.With the knowledge of measurement data and measurement error covariance matrix,we use gradient descent algorithm to determine the weighting matrix of model error.The uncertainty and linearization error of model are recursively estimated by the proposed method,thus achieving an online filtering estimation of the observations.Simulation results indicate that the proposed recursive estimation algorithm is insensitive to initial conditions and of good robustness.
基金supported by the Aeronautical Science Foundation of China (20105584004)the Science and Technology on Avionics Integration Laboratory
文摘A novel multi-observer passive localization algorithm based on the weighted restricted total least square (WRTLS) is proposed to solve the bearings-only localization problem in the presence of observer position errors. Firstly, the unknown matrix perturbation information is utilized to form the WRTLS problem. Then, the corresponding constrained optimization problem is transformed into an unconstrained one, which is a generalized Rayleigh quotient minimization problem. Thus, the solution can be got through the generalized eigenvalue decomposition and requires no initial state guess process. Simulation results indicate that the proposed algorithm can approach the Cramer-Rao lower bound (CRLB), and the localization solution is asymptotically unbiased.
基金the National Natural Science Foundation of China (70631003)the Hefei University of Technology Foundation (071102F).
文摘A class of nonidentical parallel machine scheduling problems are considered in which the goal is to minimize the total weighted completion time. Models and relaxations are collected. Most of these problems are NP-hard, in the strong sense, or open problems, therefore approximation algorithms are studied. The review reveals that there exist some potential areas worthy of further research.
基金supported by the National Natural Science Foundation of China(NSFC)(62102232,62122042,61971269)Natural Science Foundation of Shandong Province Under(ZR2021QF064)。
文摘As a combination of edge computing and artificial intelligence,edge intelligence has become a promising technique and provided its users with a series of fast,precise,and customized services.In edge intelligence,when learning agents are deployed on the edge side,the data aggregation from the end side to the designated edge devices is an important research topic.Considering the various importance of end devices,this paper studies the weighted data aggregation problem in a single hop end-to-edge communication network.Firstly,to make sure all the end devices with various weights are fairly treated in data aggregation,a distributed end-to-edge cooperative scheme is proposed.Then,to handle the massive contention on the wireless channel caused by end devices,a multi-armed bandit(MAB)algorithm is designed to help the end devices find their most appropriate update rates.Diffe-rent from the traditional data aggregation works,combining the MAB enables our algorithm a higher efficiency in data aggregation.With a theoretical analysis,we show that the efficiency of our algorithm is asymptotically optimal.Comparative experiments with previous works are also conducted to show the strength of our algorithm.