速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(re...速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(recursive density based clustering algorithm,简称RDBC),此算法可以智能地、动态地修改其密度参数.RDBC是基于DBSCAN的一种改进算法,其运算复杂度和DBSCAN相同.通过在Web文档上的聚类实验,结果表明,RDBC不但保留了DBSCAN高速度的优点,而且聚类效果大大优于DBSCAN.展开更多
It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting ...It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.展开更多
文摘速度和效果是聚类算法面临的两大问题.DBSCAN(density based spatial clustering of applications with noise)是典型的基于密度的一种聚类方法,对于大型数据库的聚类实验显示了它在速度上的优越性.提出了一种基于密度的递归聚类算法(recursive density based clustering algorithm,简称RDBC),此算法可以智能地、动态地修改其密度参数.RDBC是基于DBSCAN的一种改进算法,其运算复杂度和DBSCAN相同.通过在Web文档上的聚类实验,结果表明,RDBC不但保留了DBSCAN高速度的优点,而且聚类效果大大优于DBSCAN.
基金Project(50374079) supported by the National Natural Science Foundation of China
文摘It is difficult to detect the anomalies whose matching relationship among some data attributes is very different from others’ in a dataset. Aiming at this problem, an approach based on wavelet analysis for detecting and amending anomalous samples was proposed. Taking full advantage of wavelet analysis’ properties of multi-resolution and local analysis, this approach is able to detect and amend anomalous samples effectively. To realize the rapid numeric computation of wavelet translation for a discrete sequence, a modified algorithm based on Newton-Cores formula was also proposed. The experimental result shows that the approach is feasible with good result and good practicality.